2019_2020学年新教材高中数学课时跟踪检测十八函数的应用一新人教A版必修第一册.doc
《2019_2020学年新教材高中数学课时跟踪检测十八函数的应用一新人教A版必修第一册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学课时跟踪检测十八函数的应用一新人教A版必修第一册.doc(5页珍藏版)》请在咨信网上搜索。
课时跟踪检测(十八) 函数的应用(一) A级——学考水平达标练 1.端午节期间,某商场为吸引顾客,实行买100送20活动,即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物.如果你有1 460元现金,在活动期间到该商场购物,最多可以获赠购物券累计( ) A.280元 B.320元 C.340元 D.360元 解析:选D 由题意可知,1 460=1 400+20+40,1 400元现金可送280元购物券,把280元购物券当作现金加上20元现金可送60元购物券,再把60元购物券当作现金加上40元现金可获送20元购物券,所以最多可以获赠购物券280+60+20=360(元). 2.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么( ) A.人可在7秒内追上汽车 B.人可在10秒内追上汽车 C.人追不上汽车,其间距最少为5米 D.人追不上汽车,其间距最少为7米 解析:选D 设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值7,故选D. 3.某公司市场营销人员的个人月收入与其每月的销售量呈一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( ) A.3 100元 B.3 000元 C.2 900元 D.2 800元 解析:选B 设函数解析式为y=kx+b(k≠0), 函数图象过点(1,8 000),(2,13 000), 则解得 ∴y=5 000x+3 000, 当x=0时,y=3 000,∴营销人员没有销售量时的收入是3 000元. 4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( ) A.30元 B.42元 C.54元 D.越高越好 解析:选B 设当每件商品的售价为x元时,每天获得的销售利润为y元. 由题意得,y=m(x-30)=(x-30)·(162-3x).上式配方得y=-3(x-42)2+432. 所以当x=42时,利润最大. 5.某汽车在同一时间内速度v(km/h)与耗油量Q(L)之间有近似的函数关系:Q=0.002 5v2-0.175v+4.27,则车速为________km/h时,汽车的耗油量最少. 解析:Q=0.002 5v2-0.175v+4.27=0.002 5(v2-70v)+4.27=0.002 5[(v-35)2-352]+4.27=0.002 5(v-35)2+1.207 5. 故v=35 km/h时,耗油量最少. 答案:35 6.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x=10时,顾客一次购草莓和西瓜各1盒,需要支付________元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________. 解析:①顾客一次购买草莓和西瓜各1盒,原价应为60+80=140(元),超过了120元可以优惠,所以当x=10时,顾客需要支付140-10=130(元). ②由题意知,当x确定后,顾客可以得到的优惠金额是固定的,所以顾客支付的金额越少,优惠的比例越大.而顾客要想得到优惠,最少要一次购买2盒草莓,此时顾客支付的金额为(120-x)元,所以(120-x)×80%≥120×0.7,所以x≤15.即x的最大值为15. 答案:130 15 7.某游乐场每天的盈利额y元与售出的门票张数x之间的函数关系如图所示,试由图象解决下列问题: (1)求y与x的函数解析式; (2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票? 解:(1)由图象知,可设y=kx+b,x∈[0,200]时,代入点(0,-1 000)和(200,1 000),解得k=10,b=-1 000, 从而y=10x-1 000; x∈(200,300]时,代入点(200,500)和(300,2 000),解得k=15,b=-2 500, 从而y=15x-2 500, 所以y= (2)每天的盈利额超过1 000元,则x∈(200,300],由15x-2 500>1 000,得x>,故每天至少需要卖出234张门票. 8.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少? 解:设可获得总利润为R(x)万元, 则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210). ∵R(x)在[0,210]上是增函数, ∴当x=210时,R(x)max=-(210-220)2+1 680 =1 660(万元). ∴年产量为210吨时,可获得最大利润1 660万元. B级——高考水平高分练 1.某公园要建造一个直径为20 m的圆形喷水池,计划在喷水池的周边靠近水面的位置安装一圈喷水头,使喷出的水柱在离池中心2 m处达到最高,最高的高度为8 m.另外还要在喷水池的中心设计一个装饰物,使各方向喷来的水柱在此处汇合,则这个装饰物的高度应该为________m. 解析:根据题意易知,水柱上任意一个点距水池中心的水平距离为x,与此点的高度y之间的函数关系式是:y=a1(x+2)2+8(-10≤x<0)或y=a2(x-2)2+8(0≤x≤10),由x=-10,y=0,可得a1=-;由x=10,y=0,可得a2=-,于是,所求函数解析式是y=-(x+2)2+8(-10≤x<0) 或y=-(x-2)2+8(0≤x≤10).当x=0时,y=7.5,∴装饰物的高度为7.5 m. 答案:7.5 2.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm,椅子的高度为x cm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度: 第一套 第二套 椅子高度x(cm) 40.0 37.0 桌子高度y(cm) 75.0 70.2 (1)请你确定y与x的函数解析式(不必写出x的取值范围); (2)现有一把高42.0 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么? 解:(1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数解析式为y=kx+b(k≠0).将符合条件的两套课桌椅的高度代入上述函数解析式. 得所以 所以y与x的函数解析式是y=1.6x+11. (2)把x=42代入(1)中所求的函数解析式中, 有y=1.6×42+11=78.2. 所以给出的这套桌椅是配套的. 3.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息解答下列问题: (1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数关系式; (2)求截止第几月末公司累积利润可达到30万元; (3)求第八个月公司所获得的利润是多少万元. 解:(1)由二次函数图象可设S与t的函数关系式为 S=at2+bt+c. 由题意,得或 或 无论哪个均可解得a=,b=-2,c=0, 所以所求函数关系式为S=t2-2t. (2)把S=30代入,得30=t2-2t, 解得t1=10,t2=-6(舍去), 所以截止第10个月末公司累积利润可达到30万元. (3)把t=7代入,得 S=×72-2×7==10.5(万元), 把t=8代入,得 S=×82-2×8=16(万元), 则第八个月获得的利润为16-10.5=5.5(万元), 所以第八个月公司所获利润为5.5万元. - 5 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 课时 跟踪 检测 十八 函数 应用 新人 必修 一册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文