2019_2020学年新教材高中数学第六章平面向量及其应用6.2.1向量的加法运算应用案巩固提升新人教A版必修第二册.doc
《2019_2020学年新教材高中数学第六章平面向量及其应用6.2.1向量的加法运算应用案巩固提升新人教A版必修第二册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学第六章平面向量及其应用6.2.1向量的加法运算应用案巩固提升新人教A版必修第二册.doc(6页珍藏版)》请在咨信网上搜索。
6.2.1 向量的加法运算 [A 基础达标] 1.点O是平行四边形ABCD的两条对角线的交点,则++等于( ) A. B. C. D. 解析:选A.因为点O是平行四边形ABCD的两条对角线的交点,则++=+=.故选A. 2.如图,四边形ABCD是梯形,AD∥BC,对角线AC与BD相交于点O,则+++=( ) A. B. C. D. 解析:选B.+++=+++=++=+=. 3.若向量a表示“向东航行1 km”,向量b表示“向北航行 km ”,则向量a+b表示( ) A.向东北方向航行2 km B.向北偏东30°方向航行2 km C.向北偏东60°方向航行2 km D.向东北方向航行(1+)km 解析:选B.如图,易知tan α=,所以α=30°.故a+b的方向是北偏东30°.又|a+b|=2 km,故选B. 4.如图所示,在正六边形ABCDEF中,若AB=1,则|++|等于( ) A.1 B.2 C.3 D.2 解析:选B.由正六边形知=, 所以++=++=, 所以|++|=||=2.故选B. 5.(2019·云南曲靖一中检测)已知向量a,b皆为非零向量,下列说法不正确的是( ) A.若a与b反向,且|a|>|b|,则a+b与a同向 B.若a与b反向,且|a|>|b|,则a+b与b同向 C.若a与b同向,则a+b与a同向 D.若a与b同向,则a+b与b同向 解析:选B.a与b反向,且|a|>|b|,则a+b与a同向,所以B错;a与b同向,则a+b与a同向,也与b同向. 6.化简(+)+(+)+=________. 解析:原式=(+)+(+)+=++=+=. 答案: 7.在菱形ABCD中,∠DAB=60°,||=1,则|+|=________. 解析:在菱形ABCD中,连接BD, 因为∠DAB=60°,所以△BAD为等边三角形, 又因为||=1,所以||=1, 所以|+|=||=1. 答案:1 8.已知平行四边形ABCD,设+++=a,且b是一非零向量,给出下列结论: ①a∥b;②a+b=a;③a+b=b;④|a+b|<|a|+|b|. 其中正确的是________. 解析:因为在平行四边形ABCD中,+=0,+=0,所以a为零向量,因为零向量和任意向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确,②④错误. 答案:①③ 9.根据下列条件,分别判断四边形ABCD的形状: (1)=; (2)=且||=||. 解:(1)因为=,所以AD∥BC,AD=BC, 所以四边形ABCD是平行四边形. (2)因为=且||=||,所以四边形ABCD是有一组邻边相等的平行四边形,即四边形ABCD是菱形. 10.已知||=|a|=3,||=|b|=3,∠AOB=60°,求|a+b|. 解:如图,因为||=||=3, 所以四边形OACB为菱形, 连接OC,AB,则OC⊥AB, 设垂足为D. 因为∠AOB=60°, 所以AB=||=3. 所以在Rt△BDC中,CD=. 所以||=|a+b|=×2=3. [B 能力提升] 11.已知有向线段,不平行,则( ) A.|+|>|| B.|+|≥|| C.|+|≥||+|| D.|+|<||+|| 解析:选D.由向量加法的几何意义得||a|-|b||≤|a+b|≤|a|+|b|,等号当且仅当a,b共线的时候取到,所以本题中,|+|<||+||. 12.若P为△ABC的外心,且+=,则∠ACB=______. 解析:因为+=,则四边形APBC是平行四边形. 又P为△ABC的外心, 所以||=||=||. 因此∠ACB=120°. 答案:120° 13.如图,已知△ABC是直角三角形且∠A=90°,则下列结论中正确的是________. ①|+|=||; ②|+|=||; ③||2+||2=||2. 解析:①正确.以AB,AC为邻边作▱ABDC,又∠A=90°, 所以▱ABDC为矩形,所以AD=BC, 所以|+|=||=||. ②正确.|+|=||=||. ③正确.由勾股定理知||2+||2=||2. 答案:①②③ 14.如图,已知向量a,b,c,d. (1)求作a+b+c+d; (2)设|a|=2,e为单位向量,求|a+e|的最大值. 解:(1)在平面内任取一点O,作=a,=b,=c,=d,则=a+b+c+d. (2)在平面内任取一点O,作=a,=e,则a+e=+=, 因为e为单位向量, 所以点B在以点A为圆心的单位圆上(如图所示), 由图可知当点B在点B1时,O,A,B1三点共线, ||即|a+e|最大,最大值是3. [C 拓展探究] 15.如图,在重300 N的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,要使整个系统处于平衡状态,两根绳子的拉力为多少? 解:如图,作▱OACB, 使∠AOC=30°,∠BOC=60°, 则∠ACO=∠BOC=60°,∠OAC=90°. 设向量,分别表示两根绳子的拉力,则表示物体所受的重力,且||=300 N. 所以||=||cos 30°=150 (N), ||=||cos 60°=150(N). 所以与铅垂线成30°角的绳子的拉力是150 N,与铅垂线成60°角的绳子的拉力是150 N. - 6 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 第六 平面 向量 及其 应用 6.2 加法 运算 巩固 提升 新人 必修 第二
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2019_2020学年新教材高中数学第六章平面向量及其应用6.2.1向量的加法运算应用案巩固提升新人教A版必修第二册.doc
链接地址:https://www.zixin.com.cn/doc/4492260.html
链接地址:https://www.zixin.com.cn/doc/4492260.html