2019_2020学年新教材高中数学课时跟踪检测二集合的表示新人教A版必修第一册.doc
《2019_2020学年新教材高中数学课时跟踪检测二集合的表示新人教A版必修第一册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学课时跟踪检测二集合的表示新人教A版必修第一册.doc(5页珍藏版)》请在咨信网上搜索。
课时跟踪检测(二) 集合的表示 A级——学考水平达标练 1.下列说法中正确的是( ) A.集合{x|x2=1,x∈R}中有两个元素 B.集合{0}中没有元素 C.∈{x|x<2} D.{1,2}与{2,1}是不同的集合 解析:选A {x|x2=1,x∈R}={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x|x<2}={x|x<},>,所以∉{x|x<2};根据集合中元素的无序性可知{1,2}与{2,1}是同一个集合. 2.下列集合的表示方法正确的是( ) A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R} B.不等式x-1<4的解集为{x<5} C.{全体整数} D.实数集可表示为R 解析:选D 选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{}”与“全体”意思重复. 3.下列选项中,集合M,N相等的是( ) A.M={3,2},N={2,3} B.M={(3,2)},N={(2,3)} C.M={3,2},N={(3,2)} D.M={(x,y)|x=3且y=2},N={(x,y)|x=3或y=2} 解析:选A 集合中元素具有无序性,A正确;点的横坐标、纵坐标是有序的,B选项两集合中的元素不同;C选项中集合M中元素是两个数,N中元素是一个点,不相等;D选项中集合M中元素是一个点(3,2),而N中元素是两条直线x=3和y=2上所有的点,不相等. 4.已知集合A={x|x=2m-1,m∈Z},B={x|x=2n,n∈Z},且x1,x2∈A,x3∈B,则下列判断不正确的是( ) A.x1·x2∈A B.x2·x3∈B C.x1+x2∈B D.x1+x2+x3∈A 解析:选D ∵集合A表示奇数集,B表示偶数集, ∴x1,x2是奇数,x3是偶数, ∴x1+x2+x3应为偶数,即D是错误的. 5.若集合A={-1,2},B={0,1},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( ) A.5 B.4 C.3 D.2 解析:选B ∵集合A={-1,2},B={0,1}, 集合{z|z=x+y,x∈A,y∈B}, ∴当x=-1时,y=0或1,可得z=-1或0, 当x=2时,y=0或1,可得z=2或3, ∴集合z的元素有:-1,0,2,3.有4个元素. 6.图中阴影部分(含边界)所表示的点的集合用描述法表示为________. 解析:由于阴影部分是由一些点构成的,且-1≤x≤3,-1≤y≤1,因此该部分用集合表示为{(x,y)|-1≤x≤3且-1≤y≤1}. 答案:{(x,y)|-1≤x≤3且-1≤y≤1} 7.已知A={(x,y)|x+y=6,x∈N,y∈N},用列举法表示A为________. 解析:∵x+y=6,x∈N,y∈N,∴x=6-y∈N, ∴ ∴A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 答案:{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)} 8.设-5∈{x|x2-ax-5=0},则集合{x|x2+ax+3=0}=________. 解析:由题意知,-5是方程x2-ax-5=0的一个根, 所以(-5)2+5a-5=0,得a=-4, 则方程x2+ax+3=0,即x2-4x+3=0, 解得x=1或x=3, 所以{x|x2-4x+3=0}={1,3}. 答案:{1,3} 9.选择适当的方法表示下列集合: (1)大于1且小于8的有理数; (2)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合; (3)方程(x2-9)x=0的实数解组成的集合; (4)100以内被3除余1的正整数. 解:(1)大于1且小于8的有理数有无数个,用描述法表示为{x∈Q|1<x<8}. (2)集合的元素是点,点有无数个,用描述法表示为{(x,y)|y=-x+4,x∈N,y∈N}. (3)方程(x2-9)x=0的实数解有三个-3,0,3,集合用列举法表示为{-3,0,3},也可以用描述法表示为{x|(x2-9)x=0}. (4)100以内被3除余1的正整数用列举法表示为{1,4,7,10,13,…,100},用描述法表示为{x|x=3k+1,k∈N,x≤100}. 10.设y=x2-ax+b,A={x|y-x=0},B={x|y-ax=0},若A={-3,1},试用列举法表示集合B. 解:将y=x2-ax+b代入集合A中的方程并整理,得x2-(a+1)x+b=0.因为A={-3,1},所以方程x2-(a+1)x+b=0的两个实数根为-3,1.由根与系数的关系得解得所以y=x2+3x-3.将y=x2+3x-3,a=-3代入集合B中的方程并整理,得x2+6x-3=0,解得x=-3±2,所以B={-3-2,-3+2}. B级——高考水平高分练 1.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为____________. 解析:∵甲最终的得分为27分,∴甲答对了10道题目中的9道,∵甲和乙都解答了所有的试题,∴甲必然有一道题目答错了,不妨设为第一题. ∵甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果是第一道题,则乙可能答错,也可能答对,此时乙可得27分或30分. 如果是第一道题以外的一个题目,则乙一定答错,而第一道题,则乙也一定答错,此时乙可得24分. 综上可得:乙的所有可能的得分值组成的集合为{24,27,30}. 答案:{24,27,30} 2.已知集合A中的元素均为整数,对于k∈A,如果k-1∉A且k+1∉A,那么称k是A的一个“孤立元”.给定集合S={1,2,3,4,5,6,7,8},由S中的3个元素构成的所有集合中,不含“孤立元”的集合共有________个. 解析:依题意可知,所谓不含“孤立元”的集合就是集合中的3个元素必须是3个相邻的正整数,故所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个. 答案:6 3.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值. 解:分两种情况进行讨论. ①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0. 当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0.所以c2-2c+1=0,即c=1,但c=1时,B中的三个元素相同,不符合题意. ②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0. 由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0. 解得c=-或c=1(舍去),当c=-时,经验证,符合题意. 综上所述,c=-. 4.已知集合A={x∈R|ax2-3x+1=0,a∈R}. (1)若集合A中有两个元素,求实数a的取值范围; (2)若集合A中至多有一个元素,求实数a的取值范围. 解:(1)集合A中含有两个元素,即关于x的方程ax2-3x+1=0有两个不相等的实数解, ∴a≠0,且Δ=(-3)2-4a>0, 解得a<且a≠0, ∴实数a的取值范围为. (2)当a=0时,x=,符合题意; 当a≠0时,Δ=(-3)2-4a≤0,即a≥. ∴实数a的取值范围为. 5.已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3, n∈Z}. (1)若m∈M,则是否存在a∈A,b∈B,使m=a+b成立? (2)对于任意a∈A,b∈B,是否一定存在m∈M,使a+b=m?证明你的结论. 解:(1)设m=6k+3=3k+1+3k+2(k∈Z), 令a=3k+1(k∈Z),b=3k+2(k∈Z),则m=a+b. 故若m∈M,则存在a∈A,b∈B,使m=a+b成立. (2)设a=3k+1,b=3l+2,k,l∈Z,则a+b=3(k+l)+3,k,l∈Z. 当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l=2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立. 故对于任意a∈A,b∈B,不一定存在m∈M,使a+b=m. - 5 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 课时 跟踪 检测 集合 表示 新人 必修 一册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文