2019_2020学年新教材高中数学章末综合检测二统计与概率新人教B版必修第二册.doc
《2019_2020学年新教材高中数学章末综合检测二统计与概率新人教B版必修第二册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学章末综合检测二统计与概率新人教B版必修第二册.doc(16页珍藏版)》请在咨信网上搜索。
章末综合检测(二) 统计与概率 A卷——学业水平考试达标练 (时间:60分钟 满分:100分) 一、选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的) 1.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A.10组 B.9组 C.8组 D.7组 解析:选B 根据列频率分布表的步骤,=8.9,所以分为9组较为恰当. 2.下列事件是随机事件的个数是( ) ①同性电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y=logax(a>0,且a≠1)在定义域上是增函数. A.0 B.1 C.2 D.3 解析:选C ②④是随机事件;①是必然事件;③是不可能事件. 3.从4双不同的鞋中任意摸出4只,事件“4只全部成对”的对立事件是( ) A.至多有2只不成对 B.恰有2只不成对 C.4只全部不成对 D.至少有2只不成对 解析:选D 从4双不同的鞋中任意摸出4只,可能的结果为“恰有2只成对”“4只全部成对”“4只都不成对”,故事件{4只全部成对}的对立事件是{恰有2只成对}+{4只都不成对}={至少有2只不成对},故选D. 4.统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是( ) A.20% B.25% C.6% D.80% 解析:选D 从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10×(0.005+0.015)=0.8=80%. 5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( ) A. B. C. D. 解析:选C 记取到语文、数学、英语、物理、化学书分别为事件A,B,C,D,E,则A,B,C,D,E互斥,取到理科书的概率为事件B,D,E概率的和.∴P(B+D+E)=P(B)+P(D)+P(E)=++=. 6.在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( ) A.0.2 B.0.4 C.0.6 D.0.8 解析:选C 一个五位数能否被2或5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除”这一事件中含有基本事件2,4,5,概率为=0.6. 7.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差 解析:选A 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A. 8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( ) A.1% B.2% C.3% D.5% 解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 9.甲、乙、丙、丁四名射击手在选拔赛中的平均环数及其标准差s如下表所示,则选送决赛的最佳人选应是________. 甲 乙 丙 丁 7 8 8 7 s 2.5 2.5 2.8 3 解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 答案:乙 10.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是________. 解析:高三的人数为900-240-260=400,所以在高三抽取的人数为×400=20. 答案:20 11.已知两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为_______. 解析:记两个零件中恰有一个一等品的事件为A,则P(A)=×+×=. 答案: 12.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵==0.98, ∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.98 三、解答题(本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤) 13.(8分)某教授为了测试贫困地区和发达地区同龄儿童的智力,出了10个智力题,每个题10分.统计结果如下表所示: 贫困地区 参加测试的人数 30 50 100 200 500 800 得60分以上的人数 16 27 52 104 256 402 得60分以上的频率 发达地区 参加测试的人数 30 50 100 200 500 800 得60分以上的人数 17 29 56 111 276 440 得60分以上的频率 (1)分别计算两地区参加测试的儿童中得60分以上的频率,填入表中; (2)估计两个地区参加测试的儿童得60分以上的概率. 解:(1)如表所示: 贫困地区 参加测试的人数 30 50 100 200 500 800 得60分以上的人数 16 27 52 104 256 402 得60分以上的频率 0.533 0.540 0.520 0.520 0.512 0.503 发达地区 参加测试的人数 30 50 100 200 500 800 得60分以上的人数 17 29 56 111 276 440 得60分以上的频率 0.567 0.580 0.560 0.555 0.552 0.550 (2)随着测试人数的增加,两个地区参加测试的儿童得60分以上的频率逐渐趋近于0.5和0.55.故可估计概率分别为0.5和0.55. 14.(10分)从甲、乙、丙、丁四个人中选两名代表,求: (1)甲被选中的概率;(2)丁没被选中的概率. 解:(1)“选出的两名代表”这个试验的样本空间Ω={(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)}. (1)记甲被选中为事件A,则A={(甲,乙),(甲,丙),(甲,丁)},故P(A)==. (2)记丁没被选中为事件B,则B={(甲,乙),(甲,丙), (乙,丙)},则P(B)=1-=. 15.(10分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下: 40.02 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96 (1)完成下面的频率分布表,并在图中画出频率分布直方图和频率分布折线图. 分组 频数 频率 [39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03] 合计 (2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数. 解:(1)频率分布表如下: 分组 频数 频率 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03] 4 0.20 10 合计 20 1.00 50 频率分布直方图、频率分布折线图如图所示. (2)因为抽样的20只产品中在[39.98,40.02]范围内的有18只,所以合格率为×100%=90%. 所以根据抽样检查结果,可以估计这批产品的合格只数为9 000. 16.(12分)某校为了解高一学生周末的阅读时间,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末阅读时间(单位:h),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示. (1)求图中a的值; (2)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好都在同一个组的概率. 解:(1)由频率分布直方图可知, 周末阅读时间在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]的频率分别为0.08,0.20,0.25,0.07,0.04,0.02, 由1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5×a+0.5×a.解得a=0.30. (2)由题意得周末阅读时间在[1,1.5),[1.5,2)中的学生分别有15人、20人,按分层抽样的方法应分别抽取3人、4人,分别记作A,B,C及a,b,c,d,从7人中随机抽取2人,共有AB,AC,Aa,Ab,Ac,Ad,BC,Ba,Bb,Bc,Bd,Ca,Cb,Cc,Cd,ab,ac,ad,bc,bd,cd,共21种,抽取的2人在同一组的有AB,AC,BC,ab,ac,ad,bc,bd,cd,共9种,故所求概率P==. B卷——高考应试能力标准练 (时间:90分钟 满分:120分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的) 1.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( ) A.101 B.808 C.1 212 D.2 012 解析:选B 根据分层随机抽样的概念知=,解得N=808,故选B. 2.某台机床加工的1 000只产品中次品数的频率分布如下表: 次品数 0 1 2 3 4 频率 0.5 0.2 0.05 0.2 0.05 则次品数的众数、平均数依次为( ) A.0,1.1 B.0,1 C.4,1 D.0.5,2 解析:选A 由表可知,次品数的众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1. 3.如图是1951~2016年我国的年平均气温变化的折线图.根据图中信息,下列结论正确的是( ) A.1951年以来,我国的年平均气温逐年增高 B.1951年以来,我国的年平均气温在2016年再创新高 C.2000年以来,我国每年的年平均气温都高于1981~2010年的平均值 D.2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值 解析:选D 由图可知,1951年以来,我国的年平均气温变化是有起伏的,不是逐年增高的,所以选项A错误;1951年以来,我国的年平均气温最高的不是2016年,所以选项B错误;2012年的年平均气温低于1981~2010年的平均值,所以选项C错误;2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值,所以选项D正确.故选D. 4.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 解析:选B 由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B. 5.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A 设新农村建设前,农村的经济收入为a,则新农村建设后,农村经济收入为2a. 新农村建设前后,各项收入的对比如下表: 新农村建设前 新农村建设后 新农村建设后变化情况 结论 种植收入 60%a 37%×2a=74%a 增加 A错 其他收入 4%a 5%×2a=10%a 增加一倍以上 B对 养殖收入 30%a 30%×2a=60%a 增加了一倍 C对 养殖收入+第三产业收入 (30%+6%)a=36%a (30%+28%)× 2a=116%a 超过经济收 入2a的一半 D对 故选A. 6.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.0.5 B.0.6 C.0.7 D.0.8 解析:选C 设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70, 所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 7.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( ) A.公平,每个班被选到的概率都为 B.公平,每个班被选到的概率都为 C.不公平,6班被选到的概率最大 D.不公平,7班被选到的概率最大 解析:选D P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选D. 8.(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A. B. C. D. 解析:选D 法一:设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示. 由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=. 法二:两位男同学与两位女同学随机排成一列,因为男同学人数与女同学人数相等,所以两女同学相邻与不相邻的排法种数相同,所以两女同学相邻与不相邻的概率均为. 甲 乙 8 0 3 1 2 8 2 5 6 y x 2 3 1 9.如图是某赛季甲、乙两名篮球运动员5场比赛得分情况.已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A.x=9 B.y=8 C.乙的成绩的中位数为26 D.乙的成绩的方差小于甲的成绩的方差 解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 10.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( ) A. B. C. D. 解析:选D 由P(A)=P(B),得P(A)P()=P(B)P(),即P(A)[1-P(B)]=P(B)[1-P(A)], ∴P(A)=P(B).又P( ∩)=,∴P()=P()=,∴P(A)=. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 11.(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________. 解析:因为这组数据的平均数为8,所以方差s2=×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=. 答案: 12.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下: 甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12. 三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲____________,乙________,丙________. 解析:甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数==8;丙:该组数据的中位数是=8. 答案:众数 平均数 中位数 13.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________. 解析:因为高一年级抽取学生的比例为=,所以=,解得k=2,故高三年级抽取的人数为1 200×=360. 答案:360 14.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点出现”,则事件A∪发生的概率为________.( 表示B的对立事件) 解析:事件A包含的基本事件为“出现2点”或“出现4点”;表示“大于等于5的点出现”,包含的基本事件为“出现5点”或“出现6点”.显然A与是互斥的,故P(A∪)=P(A)+P()=+=. 答案: 三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(8分)某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表: 第一车间 第二车间 第三车间 女工 173 100 y 男工 177 x z 已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15. (1)求x的值; (2)现用比例分配的分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人? 解:(1)依题意有=0.15,解得x=150. (2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250, ∴第三车间的工人数是1 000-350-250=400. 设应从第三车间抽取m名工人,则有=, 解得m=20,∴应在第三车间抽取20名工人. 16.(10分)在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率. 解:如图所示,分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C. 由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不闭合的概率是P( )=P()P()P()=[1-P(A)][1-P(B)]·[1-P(C)]=(1-0.7)×(1-0.7)×(1-0.7)=0.027. 于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P( )=1-0.027=0.973. 即在这段时间内线路正常工作的概率是0.973. 17.(10分)(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图: 记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70. (1)求乙离子残留百分比直方图中a,b的值; (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解:(1)由已知得0.70=a+0.20+0.15, 解得a=0.35, 所以b=1-0.05-0.15-0.70=0.10. (2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为 3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 18.(10分)(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况. (1)应从老、中、青员工中分别抽取多少人? (2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访. 员工项目 A B C D E F 子女教育 ○ ○ × ○ × ○ 继续教育 × × ○ × ○ ○ 大病医疗 × × × ○ × × 住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人 ○ ○ × × × ○ ①试用所给字母列举出所有可能的抽取结果; ②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率. 解:(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人. (2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种. ②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种. 所以,事件M发生的概率P(M)=. 19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数 1 5 13 10 16 5 (1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图; (2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表) 解:(1)频率分布直方图如图所示. (2)根据频率分布直方图知,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为 1=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 该家庭使用了节水龙头后50天日用水量的平均数为 2=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3). - 16 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 综合 检测 统计 概率 新人 必修 第二
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文