深圳葵涌官湖学校初中部人教版七年级下册数学期末压轴难题试卷.doc
《深圳葵涌官湖学校初中部人教版七年级下册数学期末压轴难题试卷.doc》由会员分享,可在线阅读,更多相关《深圳葵涌官湖学校初中部人教版七年级下册数学期末压轴难题试卷.doc(26页珍藏版)》请在咨信网上搜索。
深圳葵涌官湖学校初中部人教版七年级下册数学期末压轴难题试卷 一、选择题 1.的平方根是() A.- B. C. D. 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是() A. B. C. D. 3.点A(-2,-4)所在象限为( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,假命题的数量为( ) ①如果两个角的和等于平角,那么这两个角互为补角; ②内错角相等; ③两个锐角的和是锐角; ④如果直线a∥b,b∥c,那么a∥c. A.3 B.2 C.1 D.0 5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB=35°,则下列结论错误的是( ) A.∠C'EF=35° B.∠AEC=120° C.∠BGE=70° D.∠BFD=110° 6.下列运算正确的是( ) A. B. C. D. 7.如图,将一张长方形纸片折叠,若,则的度数是( ) A.80° B.70° C.60° D.50° 8.如图所示,在平面直角坐标系中,有若干个整数点,其排列顺序按图中箭头方向排列,如,,,,,根据这个规律探索可得,第2021个点的坐标为( ) A. B. C. D. 二、填空题 9.已知非零实数a.b满足|2a-4|+|b+2|++4=2a,则2a+b=_______. 10.已知点的坐标是,且点关于轴对称的点的坐标是,则__________. 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 12.如图,直线,相交于点E,.若,则等于_____. 13.如图,在△ABC中,∠ACB=90°,∠A<∠B,点D为AB边上一点且不与A、B重合,将△ACD沿CD翻折得到△ECD,直线CE与直线AB相交于点F.若∠A=α,当△DEF为等腰三角形时,∠ACD=__________________.(用α的代数式表示∠ACD) 14.定义:对任何有理数,都有,若已知=0,则=____________. 15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____. 16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___. 三、解答题 17.计算. (1); (2). 18.已知:,,,求下列各式的值: (1)的值; (2)的值. 19.如图,,,求度数.完成说理过程并注明理由. 解:∵, ∴________( ) 又∵, ∴, ∴__________( ) ∴( ) ∵, ∴______度. 20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),B→D( , ),C→ (+1, ); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置. 21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.4<<1.5.利用“逐步逼近“法,请回答下列问题: (1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= . (2)x是+2的小数部分,y是﹣1的整数部分,求x= ,y= . (3)(﹣x)y的平方根. 二十二、解答题 22.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 二十三、解答题 23.已知,点为平面内一点,于. (1)如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且. (1)将直角如图1位置摆放,如果,则________; (2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论. 25.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动. (1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由. (2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由. 26.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得. 【详解】 解:因为, 所以的平方根是, 故选:C. 【点睛】 本题考查了平方根,熟练掌握平方根的定义是解题关键. 2.D 【分析】 根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案. 【详解】 解:A、是由基本图形旋转得到的,故不选. B、是轴对称图形,故不选. C、是由基本图形旋转得到的,故不选. 解析:D 【分析】 根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案. 【详解】 解:A、是由基本图形旋转得到的,故不选. B、是轴对称图形,故不选. C、是由基本图形旋转得到的,故不选. D、是由基本图形平移得到的,故选此选项. 综上,本题选择D. 【点睛】 本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断. 3.C 【分析】 先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限. 【详解】 A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件, 所以点A在第三象限. 故选C. 【点睛】 本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④. 【详解】 根据平角和补角的性质可以判断①是真命题; 两直线平行内错角相等,故②是假命题; 两锐角的和可能是钝角也可能是直角,故③是假命题; 平行于同一条直线的两条直线平行,故④是真命题, 因此假命题有两个②和③, 故选:B. 【点睛】 本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键. 5.B 【分析】 根据平行线的性质即可求解. 【详解】 A.∵AE∥BF, ∴∠C'EF=∠EFB=35°(两直线平行,内错角相等), 故A选项不符合题意; B.∵纸条按如图所示的方式析叠, ∴∠FEG=∠C'EF=35°, ∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°, 故B选项符合题意; C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°, 故C选项不符合题意; D.∵AE∥BF, ∴∠EGF=∠AEC=110°(两直线平行,内错角相等), ∵EC∥FD, ∴∠BFD=∠EGF=110°(两直线平行,内错角相等), 故D选项不符合题意; 故选:B. 【点睛】 本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 6.C 【分析】 利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断. 【详解】 解:A、,故本选项错误; B、,故本选项错误; C、,故本选项正确; D、,故本选项错误; 故选:C. 【点睛】 此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键. 7.A 【分析】 先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案. 【详解】 解:如图, 由折叠性质知∠4=∠2=50°, ∴∠3=180°-∠4-∠2=80°, ∵AB∥CD, ∴∠1=∠3=80°, 故选:A. 【点睛】 本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质. 8.A 【分析】 通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标. 【详解】 解:将 解析:A 【分析】 通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标. 【详解】 解:将点(1,0)作为第1列, 将横坐标为2的点即点(2,0)和点(2,1)作为第2列, 将横坐标为3的点作为第3列,依次类推……; 则第n列的点的横坐标为n,令前n列一共有的点的个数为, 当时,, 则第2021个点在64列自下向上第4个数,则该点坐标为. 故选A. 【点睛】 本题综合考查了平面直角坐标系中的点的坐标规律,观察发现点的分布规律,即每一列点的变化规律以及运动方向或顺序等以及数形结合思想的运用成为解答本题的关键. 二、填空题 9.4 【分析】 首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值. 【详解】 解: 解析:4 【分析】 首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值. 【详解】 解:由题意可得a≥3, ∴2a-4>0, 已知等式整理得:|b+2|+=0, ∴a=3,b=-2, ∴2a+b=2×3-2=4. 故答案为4. 【点睛】 本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键. 10.-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1 解析:-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1. 【点睛】 解决本题的关键是掌握好对称点的坐标规律: (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数. 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 12.80°. 【分析】 先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论. 【详解】 解:∵∠AEC=100°, ∴∠BEC=180°-100°=80°. ∵DF∥AB, ∴∠D=∠BE 解析:80°. 【分析】 先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论. 【详解】 解:∵∠AEC=100°, ∴∠BEC=180°-100°=80°. ∵DF∥AB, ∴∠D=∠BEC=80°. 故答案为:80°. 【点睛】 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13.或或 【分析】 若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果. 【详解】 解:由翻折的性质可知,, 如图1, 当时,则, ,, , , 当时,为等腰三角形, 故答案 解析:或或 【分析】 若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果. 【详解】 解:由翻折的性质可知,, 如图1, 当时,则, ,, , , 当时,为等腰三角形, 故答案为. 当时,; , , ,; , , 如图2, 当时,; ,, ; 当或或时,为等腰三角形, 故答案为:或或. 【点睛】 本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理. 14.【分析】 先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值. 【详解】 解:∵=0,∴a=2,b= -3, ∴==4-6+9=7, 故答案为:7. 【点睛】 解析:【分析】 先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值. 【详解】 解:∵=0,∴a=2,b= -3, ∴==4-6+9=7, 故答案为:7. 【点睛】 本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.解题的关键是对号入座不要找错对应关系. 15.(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0), 解析:(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0),B(2,0), ∴AB=2-1=1, ∴△ABC的面积=×1•h=2, 解得h=4, 点C在y轴正半轴时,点C为(0,4), 点C在y轴负半轴时,点C为(0,-4), 所以,点C的坐标为(0,4)或(0,-4). 故答案为:(0,4)或(0,-4). 【点睛】 本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键. 16.(64,4) 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0 解析:(64,4) 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解】 解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列, 依此类推,则第一列有一个数,第二列有2个数, 第n列有n个数.则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上. 因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数. 因而第2021个点的坐标是(64,4). 故答案为:(64,4). 【点睛】 本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 三、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 18.(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2) 解析:(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2)∵, ∴===13. 【点睛】 本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键. 19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等 解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可. 【详解】 解:∵EF∥AD, ∴∠2=∠3(两直线平行,同位角相等). 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥DG(内错角相等,两直线平行). ∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补). ∵∠AGD=110°, ∴∠BAC=70度. 故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70. 【点睛】 本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键. 20.(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3 解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2); 故答案为3,4;3,﹣2;D,﹣2; (2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图 【点睛】 本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键. 21.(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解析:(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解:(1)∵16<17<25, ∴, ∴a=4,b=5. 故答案为:4;5 (2)∵, ∴, 由此:的整数部分为6,小数部分为, ∴,. 故答案为:;3 (3)当,时,代入, . ∴64的平方根为:. 【点睛】 本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数. 二十二、解答题 22.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 二十三、解答题 23.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3 解析:(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N 解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°. (3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解. 【详解】 解:(1)如图,作CP//a, ∵a//b,CP//a, ∴CP//a//b, ∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°, ∴∠BCP=180°-∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°-∠CEF=90°, ∴∠CEF=180°-90°+∠AOG=146°. (2)∠AOG+∠NEF=90°.理由如下: 如图,作CP//a,则CP//a//b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∵∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°. (3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF, ∵∠GOC=∠GOP+∠POQ=135°, ∴∠GOP=135°-∠POQ, ∴∠OPQ=135°-∠POQ+∠PQF. 如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴135°-∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解. 25.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小. 第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解. 【详解】 解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下: ∵m⊥n, ∴∠AOB=90°, ∵在△ABO中,∠AOB+∠ABO+∠BAO=180°, ∴∠ABO+∠BAO=90°, 又∵AQ、BQ分别是∠BAO和∠ABO的角平分线, ∴∠BAQ=∠BAC,∠ABQ=∠ABO, ∴∠BAQ+∠ABQ= (∠ABO+∠BAO)= 又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°, ∴∠AQB=180°﹣45°=135°. (2)如图2所示: ①∠P的大小不发生变化,其原因如下: ∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180° ∠BAQ+∠ABQ=90°, ∴∠ABF+∠EAB=360°﹣90°=270°, 又∵AP、BP分别是∠BAE和∠ABP的角平分线, ∴∠PAB=∠EAB,∠PBA=∠ABF, ∴∠PAB+∠PBA= (∠EAB+∠ABF)=×270°=135°, 又∵在△PAB中,∠P+∠PAB+∠PBA=180°, ∴∠P=180°﹣135°=45°. ②∠C的大小不变,其原因如下: ∵∠AQB=135°,∠AQB+∠BQC=180°, ∴∠BQC=180°﹣135°, 又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180° ∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF, ∴∠PBQ=∠ABQ+∠PBA=90°, 又∵∠PBC=∠PBQ+∠CBQ=180°, ∴∠QBC=180°﹣90°=90°. 又∵∠QBC+∠C+∠BQC=180°, ∴∠C=180°﹣90°﹣45°=45° 【点睛】 本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题. 26.(1)60°;(2)15°;(3)30°或15° 【分析】 (1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得 解析:(1)60°;(2)15°;(3)30°或15° 【分析】 (1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得出结论. 【详解】 解:(1), , , , , ; (2)由(1)知,, , , , ; (3)当时,如图3, 由(1)知,, ; 当时,如图4, , 点,重合, , , 由(1)知,, , 即当以、、为顶点的三角形是直角三角形时,度数为或. 【点睛】 此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深圳 葵涌官湖 学校 初中部 人教版七 年级 下册 数学 期末 压轴 难题 试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文