七年级下册数学第五章生活中的轴对称单元测试题及解析.doc
《七年级下册数学第五章生活中的轴对称单元测试题及解析.doc》由会员分享,可在线阅读,更多相关《七年级下册数学第五章生活中的轴对称单元测试题及解析.doc(39页珍藏版)》请在咨信网上搜索。
七年级下册数学第五章生活中的轴对称单元测试题及解析 北师大版七年级下册数学第五章生活中的轴对称单元测试题 一.选择题(共10小题) 1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( ) A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD 2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( ) A.13 B.15 C.17 D.19 3.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为( ) A.3cm B.6cm C.12cm D.16cm 4.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=( ) A.50° B.100° C.120° D.130° 5.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( ) A.15° B.17.5° C.20° D.22.5° 6.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是( ) A.13cm B.14cm C.13cm或14cm D.以上都不对 7.下列图形中不是轴对称图形的是( ) A. B. C. D. 8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( ) A.115° B.120° C.130° D.140° 9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是( ) A.40° B.50° C.60° D.不能确定 10.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是( ) A.∠1=2∠2 B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180° 二.填空题(共10小题) 11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为 . 12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 . 13.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC= . 14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是 . 15.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是 . 16.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是 . 17.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,如果AD=3,BD=8,那么△ADC的周长为 . 18.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 . 19.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为 . 20.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 . 三.解答题(共10小题) 21.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D, 求证:BE+DE=AC. 22.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F. 求证:DE=DF. 23.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数. 24.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=. 求证:AB平分∠EAD. 25.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD. 求证:BD=DE. 26.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F. (1)若△CMN的周长为15cm,求AB的长; (2)若∠MFN=70°,求∠MCN的度数. 27.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm. (1)求BC的长; (2)若∠A=36°,并且AB=AC.求证:BC=BE. 28.已知点D、E在△ABC的BC边上,AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据. 解:作AM⊥BC,垂足为M ∵AD=AE, ∴△ADE是 三角形, ∴DM=EM ( ) 又∵BD=CE, ∴BD+DM= ,即BM= ; 又∵ (自己所作), ∴AM是线段 的垂直平分线; ∴AB=AC ( ) ∴ . 29.电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置.(尺规作图,不写作法,保留作图痕迹) 北师大版七年级下册数学第五章生活中的轴对称单元测试题 参考答案与试题解析 一.选择题(共10小题) 1.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( ) A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD 【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD. 【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D, ∴PC=PD,故A正确; 在Rt△OCP与Rt△ODP中, , ∴△OCP≌△ODP, ∴∠CPO=∠DPO,OC=OD,故C、D正确. 不能得出∠CPD=∠DOP,故B错误. 故选B. 【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键. 2.(2016•天门)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( ) A.13 B.15 C.17 D.19 【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可. 【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点, ∴AD=DC,AE=CE=4, 即AC=8, ∵△ABC的周长为23, ∴AB+BC+AC=23, ∴AB+BC=23﹣8=15, ∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15, 故选B. 【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等. 3.(2016•恩施州)如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为( ) A.3cm B.6cm C.12cm D.16cm 【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案. 【解答】解:∵DE是AC的垂直平分线, ∴AD=DC,AE=CE=AC, ∵△ABC的周长为19cm,△ABD的周长为13cm, ∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm, ∴AC=6cm, ∴AE=3cm, 故选A. 【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等. 4.(2016•黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=( ) A.50° B.100° C.120° D.130° 【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可. 【解答】解:∵DE是线段AC的垂直平分线, ∴DA=DC, ∴∠DCA=∠A=50°, ∴∠BDC=∠DCA+∠A=100°, 故选:B. 【点评】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键. 5.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( ) A.15° B.17.5° C.20° D.22.5° 【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可. 【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D, ∴∠1=∠2,∠3=∠4, ∵∠ACE=∠A+∠ABC, 即∠1+∠2=∠3+∠4+∠A, ∴2∠1=2∠3+∠A, ∵∠1=∠3+∠D, ∴∠D=∠A=×30°=15°. 故选A. 【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析. 6.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是( ) A.13cm B.14cm C.13cm或14cm D.以上都不对 【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长. 【解答】解:当4cm为等腰三角形的腰时, 三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系, ∴周长为13cm; 当5cm为等腰三角形的腰时, 三边分别是,5cm,5cm,4cm,符合三角形的三边关系, ∴周长为14cm, 故选C 【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解本题的关键. 7.(2016•泸州)下列图形中不是轴对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形的概念求解. 【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形, 故选:C. 【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 8.(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( ) A.115° B.120° C.130° D.140° 【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可. 【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处, ∴∠BFE=∠EFB',∠B'=∠B=90°, ∵∠2=40°, ∴∠CFB'=50°, ∴∠1+∠EFB'﹣∠CFB'=180°, 即∠1+∠1﹣50°=180°, 解得:∠1=115°, 故选A. 【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等. 9.(2016•庄河市自主招生)如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是( ) A.40° B.50° C.60° D.不能确定 【分析】根据AB=AD,可得出∠B=∠ADB,再由∠ADB=α+∠C,可得出∠C=β﹣10°,再根据三角形的内角和定理得出β即可. 【解答】解:∵AB=AD, ∴∠B=∠ADB, ∵α=10°,∠ADB=α+∠C, ∴∠C=β﹣10°, ∵∠BAC=90°, ∴∠B+∠C=90°, 即β+β﹣10°=90°, 解得β=50°, 故选B. 【点评】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形外角的性质,是基础知识要熟练掌握. 10.(2016•孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是( ) A.∠1=2∠2 B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180° 【分析】由已知条件∠B=∠C,∠1=∠3,在△ABD中,由∠1+∠B+∠3=180°,可推出结论. 【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°, ∴2∠1+∠C=180°, ∴2∠1+∠1﹣∠2=180°, ∴3∠1﹣∠2=180°. 故选B. 【点评】本题考查了三角形内角和定理和三角形外角的性质的应用. 二.填空题(共10小题) 11.(2016•常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为 3 . 【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解. 【解答】解:如图,过P作PD⊥OA于D, ∵OP为∠AOB的平分线,PC⊥OB, ∴PD=PC, ∵PC=3, ∴PD=3. 故答案为:3. 【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键. 12.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 69°或21° . 【分析】分两种情况讨论:①若∠A<90°;②若∠A>90°;先求出顶角∠BAC,再利用三角形内角和定理即可求出底角的度数. 【解答】解:分两种情况讨论: ①若∠A<90°,如图1所示: ∵BD⊥AC, ∴∠A+∠ABD=90°, ∵∠ABD=48°, ∴∠A=90°﹣48°=42°, ∵AB=AC, ∴∠ABC=∠C=(180°﹣42°)=69°; ②若∠A>90°,如图2所示: 同①可得:∠DAB=90°﹣48°=42°, ∴∠BAC=180°﹣42°=138°, ∵AB=AC, ∴∠ABC=∠C=(180°﹣138°)=21°; 综上所述:等腰三角形底角的度数为69°或21°. 故答案为:69°或21°. 【点评】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解. 13.(2016•牡丹江)如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC= 5 . 【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到BF=CF=BC,由AB的垂直平分线交AB于点E,得到BD=AD=4,设DF=x,根据勾股定理列方程即可得到结论. 【解答】解:过A作AF⊥BC于F, ∵AB=AC, ∴BF=CF=BC, ∵AB的垂直平分线交AB于点E, ∴BD=AD=4, 设DF=x, ∴BF=4+x, ∵AF2=AB2﹣BF2=AD2﹣DF2, 即16﹣x2=36﹣(4+x)2, ∴x=0.5, ∴DF=0.5, ∴CD=CF+DF=BF+DF=BD+2DF=4+0.5×2=5, 故答案为:5. 【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质.此题难度不大,注意掌握转化思想与数形结合思想的应用. 14.(2016•营口模拟)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是 3 . 【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可. 【解答】解:如图,过点D作DF⊥AC于F, ∵AD是△ABC中∠BAC的角平分线,DE⊥AB, ∴DE=DF, 由图可知,S△ABC=S△ABD+S△ACD, ×4×2+×AC×2=7, 解得AC=3. 故答案为3. 【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 15.(2016•邯郸二模)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是 30 . 【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可. 【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F, ∵OB、OC分别平分∠ABC和∠ACB, ∴OE=OF=OD=3, ∵△ABC的周长是22,OD⊥BC于D,且OD=3, ∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3 =20×3=30, 故答案为:30. 【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键. 16.(2016•白云区校级二模)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是 15 . 【分析】作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出BD的长,计算即可. 【解答】解:作DE⊥AB于E, ∵AD平分∠BAC,∠C=90°,DE⊥AB, ∴CD=DE=6,又BD:CD=3:2, ∴BD=9, ∴BC=BD+DC=15, 故答案为:15. 【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 17.(2016•句容市一模)如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,如果AD=3,BD=8,那么△ADC的周长为 19 . 【分析】根据线段垂直平分线的性质得到DB=DC,根据三角形内角和定理和等腰三角形的性质证明CA=CD=DB=8,根据三角形周长公式计算即可. 【解答】解:∵BC的垂直平分线交AB于点D, ∴DB=DC, ∴∠DCB=∠B=40°, ∵∠A=80°,∠B=40°, ∴∠ACB=60°, ∴∠ACD=20°, ∴∠ADC=80°, ∴CA=CD=DB=8, ∴△ADC的周长=AD+AC+CD=19, 故答案为:19. 【点评】本题考查的是线段垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键. 18.(2016•河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 8 . 【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解. 【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°, ∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个. 故答案为8. 【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键. 19.(2016•淮安一模)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为 14cm . 【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB. 【解答】解:∵DE∥BC ∴∠DOB=∠OBC, 又∵BO是∠ABC的角平分线, ∴∠DBO=∠OBC, ∴∠DBO=∠DOB, ∴BD=OD, 同理:OE=EC, ∴△ADE的周长=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14cm. 故答案是:14cm. 【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC均为等腰三角形是关键. 20.(2016•广东校级一模)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 100° . 【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解. 【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″, 连接A′A″与BC、CD的交点即为所求的点M、N, ∵∠BAD=130°,∠B=∠D=90°, ∴∠A′+∠A″=180°﹣∠130°=50°, 由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN, ∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°. 故答案为:100°. 【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用. 三.解答题(共10小题) 21.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D, 求证:BE+DE=AC. 【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可. 【解答】证明:∵∠ACB=90°, ∴AC⊥BC, ∵ED⊥AB,BE平分∠ABC, ∴CE=DE, ∵DE垂直平分AB, ∴AE=BE, ∵AC=AE+CE, ∴BE+DE=AC. 【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 22.(2016•历下区一模)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F. 求证:DE=DF. 【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF. 【解答】证明: 证法一:连接AD. ∵AB=AC,点D是BC边上的中点 ∴AD平分∠BAC(三线合一性质), ∵DE、DF分别垂直AB、AC于点E和F. ∴DE=DF(角平分线上的点到角两边的距离相等). 证法二:在△ABC中, ∵AB=AC ∴∠B=∠C(等边对等角) …(1分) ∵点D是BC边上的中点 ∴BD=DC …(2分) ∵DE、DF分别垂直AB、AC于点E和F ∴∠BED=∠CFD=90°…(3分) 在△BED和△CFD中 ∵, ∴△BED≌△CFD(AAS), ∴DE=DF(全等三角形的对应边相等). 【点评】本题考查了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键. 23.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数. 【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数. 【解答】解:∵AB=AC,∠A=40°, ∴∠ABC=∠C==70°, ∵BD是∠ABC的平分线, ∴∠DBC=∠ABC=35°, ∴∠BDC=180°﹣∠DBC﹣∠C=75°. 【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数. 24.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=. 求证:AB平分∠EAD. 【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论.. 【解答】证明:∵AB=AC,AD是BC边上的中线, ∴BD=BC,AD⊥BC, ∵BE=BC, ∴BD=BE, ∵AE⊥BE, ∴AB平分∠EAD. 【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键. 25.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD. 求证:BD=DE. 【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE. 【解答】证明:∵△ABC是等边三角形,BD是中线, ∴∠ABC=∠ACB=60°. ∠DBC=30°(等腰三角形三线合一). 又∵CE=CD, ∴∠CDE=∠CED. 又∵∠BCD=∠CDE+∠CED, ∴∠CDE=∠CED=∠BCD=30°. ∴∠DBC=∠DEC. ∴DB=DE(等角对等边). 【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键. 26.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F. (1)若△CMN的周长为15cm,求AB的长; (2)若∠MFN=70°,求∠MCN的度数. 【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB; (2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解. 【解答】解:(1)∵DM、EN分别垂直平分AC和BC, ∴AM=CM,BN=CN, ∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB, ∵△CMN的周长为15cm, ∴AB=15cm; (2)∵∠MFN=70°, ∴∠MNF+∠NMF=180°﹣70°=110°, ∵∠AMD=∠NMF,∠BNE=∠MNF, ∴∠AMD+∠BNE=∠MNF+∠NMF=110°, ∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°, ∵AM=CM,BN=CN, ∴∠A=∠ACM,∠B=∠BCN, ∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°. 【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键. 27.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm. (1)求BC的长; (2)若∠A=36°,并且AB=AC.求证:BC=BE. 【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可; (2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解. 【解答】(1)解:∵AB的垂直平分线MN交AB于点D, ∴AE=BE, ∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC, ∵AC=15cm, ∴BC=25﹣15=10cm; (2)证明:∵∠A=36°,AB=AC, ∴∠C=(180°﹣∠A)=(180°﹣36°)=72°, ∵AB的垂直平分线MN交AB于点D, ∴AE=BE, ∴∠ABE=∠A, 由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°, ∴∠BEC=∠C, ∴BC=BE. 【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键. 28.(2016春•衡阳县校级期末)已知点D、E在△ABC的BC边上,AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据. 解:作AM⊥BC,垂足为M ∵AD=AE, ∴△ADE是 等腰 三角形, ∴DM=EM ( 等腰三角形底边上的高也是底边上的中线 ) 又∵BD=CE, ∴BD+DM= CE+EM ,即BM= CM ; 又∵ AM⊥BC (自己所作), ∴AM是线段 BC 的垂直平分线; ∴AB=AC ( 线段垂直平分线上的点到线段两个端点的距离相等 ) ∴ ∠B=∠C . 【分析】首先根据等腰三角形的性质,得DM=EM,结合已知条件,根据等式的性质,得BM=CM,从而根据线段垂直平分线的性质,得AB=AC,再根据等腰三角形的性质即可证明. 【解答】解:作AM⊥BC,垂足为M ∵AD=AE, ∴△ADE是等腰三角形, ∴DM=EM (等腰三角形底边上的高也是底边上的中线) 又∵BD=CE, ∴BD+DM=CE+EM,即BM=CM; 又∵AM⊥BC(自己所作), ∴AM是线段BC的垂直平分线; ∴AB=AC (线段垂直平分线上的点到线段两个端点的距离相等) ∴∠B=∠C. 故答案为:等腰,等腰三角形底边上的高也是底边上的中线,CE+EM,CM,AM⊥BC,BC,线段垂直平分线上的点到线段两个端点的距离相等,∠B=∠C. 【点评】此题综合考查了等腰三角形的性质、线段垂直平分线的性质.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合;等腰三角形的两个底角相等. 29.(2016秋•西市区校级期中)电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置.(尺规作图,不写作法,保留作图痕迹) 【分析】根据题意,P点既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔P的位置. 【解答】解:设两条公路相交于O点.P为线段AB的垂直平分线与∠MON的平分线交点或是与∠QON的平分线交点即为发射塔的位置.如图,满足条件的点有两个,即P、P′. 【点评】此题考查了线段的垂直平分线和角的平分线的性质,属基本作图题. 30.(2016春•长清区期末)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE. (1)说明BD=CE; (2)延长BD,交CE于点F,求∠BFC的度数; (3)若如图2放置,上面的结论还成立吗?请简单说明理由. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°. 【解答】解:(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE; (2)∵△ADB≌△AEC, ∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF 又∵∠CDF=∠BDA ∴∠BFC=180°﹣∠DBA﹣∠BDA =∠DAB =90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 第五 生活 中的 轴对称 单元测试 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文