七年级下全等三角形经典.doc
《七年级下全等三角形经典.doc》由会员分享,可在线阅读,更多相关《七年级下全等三角形经典.doc(11页珍藏版)》请在咨信网上搜索。
七年级下全等三角形经典 全等三角形综合练习题 知识点睛 1、 三角形全等的条件 (1)边边边公理:如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS (2)边角边公理:如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等,简记为SAS (3)角边角公理:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为ASA (4)角角边公理:有两个角和其中一角的对边对应相等的两个三角形全等,简记为AAS 2、直角三角形全等的特殊条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL” 3、选择证明三角形全等的方法(“题目中找,图形中看”) (1)已知两边对应相等 ①证第三边相等,再用SSS证全等 ②证已知边的夹角相等,再用SAS证全等 ③找直角,再用HL证全等 (2)已知一角及其邻边相等 ①证已知角的另一邻边相等,再用SAS证全等 ②证已知边的另一邻角相等,再用ASA证全等 ③证已知边的对角相等,再用AAS证全等 (3)已知一角及其对边相等 证另一角相等,再用AAS证全等 (4)已知两角对应相等 ①证其夹边相等,再用ASA证全等 ②证一已知角的对边相等,再用AAS证全等 4、全等三角形中的基本图形的构造与运用 (1)出现角平分线时,常在角的两边截取相等的线段,构造全等三角形 (2)出现线段的中点(或三角形的中线)时,可利用中点构造全等三角形(常用加倍延长中线) (3)利用加长(或截取)的方法解决线段的和、倍问题(转移线段) 经典例题 1. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF. 2. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF. 3. 如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF. 4. 如图,在ΔABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由。 5. 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 6. 如图,在ΔABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC的长。 7. 如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。 (1)∠DBH=∠DAC; (2)ΔBDH≌ΔADC。 8. 如图,已知为等边三角形,、、分别在边、、上,且也是等边三角形. (1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程. 9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。 10. 如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。 11. 已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,判断PM与PN的关系. 12. 如图所示,P为∠AOB的平分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,若OC=4cm,求AO+BO的值. 13. 如图,∠ABC=90°,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,若AD=4,EC=2.求DE的长。 i. 14. 如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由. 15. 如图,OE=OF,OC=OD,CF与DE交于点A,求证: AC=AD。 16. 已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。 (1) 求证:∠ABE=∠C; (2) 若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。 17. 如图∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2、5cm,DE=1.7cm,求BE的长 18. 如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:(1) △ABC≌△AED; (2) OB=OE . E D C B A 19. 如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由. 20. 已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C. 求证:OA=OD. 21. 如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. B D C F A E 22. 如图,,请你写出图中三对全等三角形,并选取其中一对加以证明. 23. 如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1) 求证:MB=MD,ME=MF (2) 当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 24. 如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E. (1) 若BD平分∠ABC,求证CE=BD; (2) 若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。 25、(7分) 在△ABC中,,AB=AC, 在AB边上取点D,在AC延长线上了取点E ,使CE=BD , 连接DE交BC于点F,求证DF=EF . 26、(8分) 如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点, DE⊥DF,交AB于点E,连结EG、EF. (1) 求证:EG=EF; (2) 请你判断BE+CF与EF的大小关系,并说明理由。 27、 如图△ABC≌△A`B`C,∠ACB=90°,∠A=25°,点B在A`B`上,求∠ACA`的度数。 28、 如图:四边形ABCD中,AD∥BC ,AB=AD+BC ,E是CD的中点,求证:AE⊥BE 。 29、 如图所示,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于D. i. 求证:(1)AE=CD;(2)若AC=12cm,求BD的长. 30、 在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE。 i. 求证:CE=CF。 ii. 在图中,若G点在AD上,且∠GCE=45° ,则GE=BE+GD成立吗?为什么? 31、 如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE. 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么? 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明. 归纳前二个问得出BD、DE、CE关系。用简洁的语言加以说明。 32、 如图所示,已知D是等腰△ABC底边BC上的一点,它到两腰AB、AC的距离分别为DE、DF,CM⊥AB,垂足为M,请你探索一下线段DE、DF、CM三者之间的数量关系, 并给予证明. 33、 在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点. 写出点O 到△ABC的三个顶点A、B、C的距离的大小关系,并说明理由. 若点M、N分别是AB、AC上的点,且BM=AN,试判断△OMN形状,并证明你的结论. 34、 如图,ABCD是正方形,点G是BC上的任意一点,于E,,交AG于F.求证:AF=BF+EF. D C B A E F G 35、如图10,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)中考资源网FC=AD; (2)中考资源网AB=BC+AD. 36、如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP. (1)如图②,若M为AD边的中点, ①,△AEM的周长=_____cm; ②求证:EP=AE+DP; (2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由. - 11 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 全等 三角形 经典
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文