6六年级奥数-第六讲.分数百分数应用题.教师版.doc
《6六年级奥数-第六讲.分数百分数应用题.教师版.doc》由会员分享,可在线阅读,更多相关《6六年级奥数-第六讲.分数百分数应用题.教师版.doc(48页珍藏版)》请在咨信网上搜索。
6六年级奥数-第六讲.分数百分数应用题.教师版 2010年学而思教育小升初专项训练 比例百分数篇 一、解答题(共25小题,满分0分) 1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元? 2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有 千克. 3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升? 4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨? 5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚? 6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生? 7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少? 8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几? 9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人? 10.(2012•中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米? 11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少? 12.(2009•东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人? 13.(2013•北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名? 14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少? 15.(2014•长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出 10克倒入C中.现在C中盐水浓度是0.5%.问最早倒入A中的盐水浓度是多少? 16.(2015•泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支? 17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元? 18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人? 19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比. 20.(2012•长春)成本0.25元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣? 21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书? 22.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比. 23.一个容器内已注满水,有大、中、小三个球.第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中,现在知道每次从容器中溢出水量的情况是,第一次是第二次的,第三次是第一次的2.5倍,求三个球的体积之比. 24.某种密瓜每天减价20%.第一天妈妈按定价减价20%买了3个密瓜,第二天妈妈又买了5个密瓜,两天共花了42元.如这8个密瓜都在第三天买,问要花多少钱? 25.(2007•兴庆区校级自主招生)袋子里红球与白球数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只,那么原先袋子里共有多少只球? 2010年学而思教育小升初专项训练9:比例百分数篇 参考答案与试题解析 一、解答题(共25小题,满分0分) 1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元? kaodian: 利润和利息问题.菁优网版权所有 分析: 设甲成本为X元,则乙为2200﹣X元,分别把甲、乙商品定价后的价钱求出,然后根据一个数乘分数的意义,求出后来都按定价的90%打折出售的总价钱,继而根据“按定价的90%打折出售的总价钱﹣成本价=获利钱数(131)”列出方程,解答即可. 解答: 解:设甲成本为x元,则乙为2200﹣x元,则: 90%×[(1+20%)x+(2200﹣x)×(1+15%)]﹣2200=131, 0.9×[1.2x+2200×1.15﹣1.15x]﹣2200=131, 0.9×[0.05x+2530]﹣2200=131, 0.045x+2277﹣2200=131, 0.045x+77=131, x=1200. 答:甲商品的成本是1200元. 点评: 解答此题的关键是先设出要求的量,进而判断出单位“1”,根据题意,找出数量间的相等关系式,然后根据关系式,进行解答即可;用到的知识点:一个数乘分数的意义. 2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有 千克. kaodian: 浓度问题;百分数的实际应用.菁优网版权所有 分析: 此题转化为浓度问题来解答,相当于蒸发问题,所以蘑菇的数量不变,列方程得:100×(1﹣99%)=(1﹣98%)X,解答即可. 解答: 解:设这100千克的蘑菇现在还有X千克,由题意得: (1﹣98%)X=100×(1﹣99%), 2%X=100×1%, 2X=100, X=50. 答:这100千克的蘑菇现在还有50千克. 点评: 此题解答的关键是根据蘑菇的数量不变,列出方程,解决问题. 3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升? kaodian: 比的应用;比例的应用.菁优网版权所有 分析: 由题意可知:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,解此比例即可. 解答: 解:设加进去的水量为x升, 则会有(8+x):(13+x)=5:7, (8+x)×7=(13+x)×5, 56+7x=65+5x, 2x=9, x=4.5; 答:加进去的水量为4.5升. 点评: 解答此题的关键是:设出未知数,利用比例解答比较容易理解. 4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨? kaodian: 差倍问题.菁优网版权所有 分析: “从甲堆运12吨给乙堆两堆煤就一样重”说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨 解答: 解:(12×2+12×2)÷(2﹣1), =48÷1, =48(吨); 所以甲乙两堆煤重: 48×(2+1)=144(吨); 答:这两堆煤共重144吨. 点评: 此题关系较为复杂,要求学生要认真审题,找准等量关系分别得出甲乙原来相差的吨数,以及2倍关系下1份的重量即乙煤重量,从而求得甲乙的总重量. 5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚? kaodian: 比的应用.菁优网版权所有 分析: 由题意可知:第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(即10:5)变为1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份,这9分对应的数量是45,可以求出原来黑棋的个数,再据“拿走15枚白棋子后,黑子与白子的个数之比为2:1”即可求得原来白棋子的个数. 解答: 解:因为2:1=10:5, 则原来黑棋子的个数:45÷9×10, =5×10, =50(个); 原来白棋的个数:45÷9×5+15, =5×5+15, =25+15, =40(个); 答:原来黑棋子有50个,白棋子有40个. 点评: 解答此题的关键是:拿走的45枚棋子对应的是9份的量,求出一份的量,即可逐步求解. 6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生? kaodian: 百分数的实际应用.菁优网版权所有 分析: 把原来全班共有的学生(48人)看作单位“1”,则男生人数占全班人数的(1﹣37.5%),根据一个数乘分数的意义,求出男生人数,进而把后来全班人数看作单位“1”,根据“对应数÷对应分率=单位“1”的量“进行解答,求出后来的全班人数,然后减去原来全班人数,即可得出结论. 解答: 解:48×(1﹣37.5%)÷(1﹣40%)﹣48, =30÷0.6﹣48, =50﹣48, =2(人); 答:转来2名女生. 点评: 这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,进行解答,用到的知识点:(1)一个数乘分数的意义,用乘法解答;(2)已知一个数的几分之几是多少,求这个数用除法. 7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少? kaodian: 百分数的实际应用;长方形、正方形的面积.菁优网版权所有 分析: 把正方形的边长看做单位“1”,根据一边减少了20%,另一边将增加2米,得到的长方形与原来的正方形面积相等,可知减少的面积就等于增加的面积,先求得增加的面积即2×(1﹣20%),也就是减少的面积数,再用减少的面积数除以20%就是原来正方形的边长,再用边长乘边长即得正方形的面积. 解答: 解:正方形的边长: 2×(1﹣20%)÷20%, =2×0.8÷0.2, =8(米); 正方形的面积: 8×8=64(平方米); 答:正方形的面积是64平方米. 点评: 解决此题关键是把正方形的边长看做“1”,根据减少的面积就等于增加的面积,先求得正方形的边长,进而求得面积. 8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几? kaodian: 分数和百分数应用题(多重条件).菁优网版权所有 分析: 由于男生人数占总人数的45%,男生中会游泳的占72%,所以在全体学生中,会游泳的男生占45%×72%=32.4%;则在全体学生中,会游泳的女生占54%﹣32.4%=21.6%;由于男生人数占总人数的45%,设全体学生为单位“1”,由于女生占全体学生的1﹣45%=55%,则不会游泳的女生有55%﹣21.6%=33.4%. 解答: 解:会游泳的女生占全体学生的: 54%﹣45%×72% =54%﹣32.4%, =21.6%; 则不会会游泳的女生占全体学生的: (1﹣45%)﹣21.6% =55%﹣21.6%, =33.4%. 答:在全体学生中不会游泳的女生占33.4%. 点评: 先根据已知条件求出会游泳的女生占全体学生的分率是完成本题的关键. 9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人? kaodian: 分数和百分数应用题(多重条件).菁优网版权所有 分析: 由题意可知,原一班的与原二班的+原一班的与原二班的=总人数,所以余下的30人占总人数的1﹣=,所以总人数有30÷=72人;72﹣30=42人,即新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,则新二班的人数是42÷(1+1+10%)=20人,则新一班有42﹣20=22人,即原一班的(﹣)=比原二班的多2人,原一班比原二班共多2=24人,所以,原一班有(72+24)÷=48人. 解答: 解:则总人数有: 30÷(1﹣) =30, =72(人); 新一、二班共有学生: 72﹣30=42(人); 新二班的人数是:42÷(1+1+10%)=20(人), 新一班比新二班多:(42﹣20)﹣22=2(人); 即原一班的(﹣)=比原二班的多2人, 原一班比原二班共多2=24人, 所以,原一班有(72+24)÷2=48人. 答:原一班有48人. 点评: 本题中的数量关系较为复杂,完成要思路清晰,根据条件中的逻辑关系认真分析,逐步解答. 10.(2012•中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米? kaodian: 组合图形的面积;长方形、正方形的面积.菁优网版权所有 分析: 画出图便于解题:长方形长与宽的比是14:5,则设原来的长方形的长宽分别为14x厘米、5x厘米,则图中红色部分是长减少13厘米后原长方形面积减少了13×5x平方厘米,绿色部分是宽增加13厘米后长方形面积增加了(14x﹣13)×13平方厘米,而实际变化后比原来长方形的面积增加182平方厘米,由此列出方程即可解答. 解答: 解:设原长方形长为14x,宽为5x.由图分析得方程 (14x﹣13)×13﹣5x×13=182, 182x﹣169﹣65x=182, 117x=351, x=3; 则原长方形面积:(14×3)×(5×3), =42×15, =630(平方厘米). 答:原来的长方形的面积是630平方厘米. 点评: 此题的关键是根据长宽的变化,画出图形,正确找出增加部分和减少部分的面积进行解答. 11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少? kaodian: 比的应用;简单的立方体切拼问题.菁优网版权所有 分析: 此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可. 解答: 解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有: (a+2b):(4a+3b)=2:5, 即5(a+2b)=2(4a+3b), 5a+10b=8a+6b, 3a=4b, 即a:b=4:3. 答:做成的竖式纸盒与横式纸盒个数之比是4:3. 点评: 此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简. 12.(2009•东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人? kaodian: 比的应用;比例的应用.菁优网版权所有 分析: 先依据“结果录取91人,其中男生与女生人数之比是8:5”,利用按比例分配的方法求出录取的男女生的人数,再据未被录取的男女生人数比和参加考试的男女生人数比,即可列比例求解. 解答: 解:录取学生中男生:91×=56(人), 女:91﹣56=35(人). 设未被录取的男生有3x人,未被录取的女生有4x人, 则有(56+3x):(35+4x)=4:3 (56+3x)×3=(35+4x)×4, 168+9x=140+16x, 7x=168﹣140, 7x=28, x=4; 所以未录取男生:4×3=12(人),女生4×4=16(人). 报考人数是:(56+12)+(35+16), =68+51, =119(人); 答:报考的共有119人. 点评: 解答此题的关键是:先求出录取的男女生的人数,再据题目条件,即可求出报考的总人数. 13.(2013•北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名? kaodian: 比的应用.菁优网版权所有 分析: 方法一:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼的方法解答,假设18名女生全部是大班,再据“大班男生数与女生数的比为5:3”,即可逐步求解. 方法二:可以把中班女生数看作“1”份,那么中班男生数为2份.从而大班中的男生数为32﹣2份,大班里的女生人数是18﹣1份.根据题意有(32﹣2份):(18﹣1份)=5:3,只要求出1份的数目即可. 解答: 解:方法一:假设18名女生全部是大班,则 大班男生数:女生数=5:3=30:18,即男生应有30人, 实际男生有32人,32﹣30=2,相差2个人; 中班男生数:女生数=2:1=6:3, 以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组; 所以,大班女生有18﹣3×2=12个. 方法二:把中班女生数看作单位“1”, 则有(32﹣2份):(18﹣1份)=5:3, (32﹣2份)×3=(18﹣1份)×5, 96﹣6份=90﹣5份 1份=6; 所以大班的女生则有18﹣6=12(人). 答:大班有女生12名. 点评: 解答此题的关键是:知道男女生的人数比例,既可以用鸡兔同笼的方法解答,也可以用份数解答. 14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少? kaodian: 利润和利息问题.菁优网版权所有 分析: 把这批笔记本的成本是“1”,因此定价是1×(1+30%)=1.3;其中80%的卖价是 1.3×80%,20%的卖价是 1.3÷2×20%;因此全部卖价是1.3×80%+1.3÷2×20%=1.17;实际获得利润的百分数是1.17﹣1=0.17=17%. 解答: 解:[1×(1+30%)×80%+1×(1+30%)÷2×(1﹣80%)]﹣1, =[1.04+0.13]﹣1, =0.17, =17%; 答:销完后商店实际获得的利润百分数是17%. 点评: 此题较难,解答此题的关键:把这批笔记本的成本是“1”,根据题意,求出全部卖出的总价,进而与成本总价进行比较,得出结论;用到的知识点:一个数乘分数的意义. 15.(2014•长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出 10克倒入C中.现在C中盐水浓度是0.5%.问最早倒入A中的盐水浓度是多少? kaodian: 浓度问题.菁优网版权所有 分析: 混合后,三个试管中的盐水分别是20克、30克、40克,又知C管中的浓度为0.5%,可算出C管中的盐是:40×0.5%=0.2(克).由于原来C管中只有水,说明这0.2克的盐来自从B管中倒入的10克盐水里. B管倒入C管的盐水和留下的盐水浓度是一样的,10克盐水中有0.2克盐,那么原来B管30克盐水就应该含盐:0.2×3=0.6(克).而且这0.6克盐来自从A管倒入的10克盐水中. A管倒入B管的盐水和留下的盐水的浓度是一样的,10克盐水中有0.6克盐,说明原A管中20克盐水含盐:0.6×2=1.2(克),而且这1.2克的盐全部来自某种浓度的盐水.即说明倒入A管中的10克盐水含盐1.2克.所以,某种浓度的盐水的浓度是1.2÷10×100%=12%. 解答: 解:B中盐水的浓度是: (30+10)×0.5%÷10×100%,=40×0.005÷10×100%,=2%. 现在A中盐水的浓度是: (20+10)×2%÷10×100%,=30×0.002÷10×100%,=6%. 最早倒入A中的盐水浓度为: (10+10)×6%÷10,=20×6%÷10,=12%. 答:最早倒入A中的盐水浓度为12%. 点评: 不管是哪类的浓度问题,最关键的思维是要抓住题中没有变化的量,不管哪个试管中的盐,都是来自最初的某种浓度的盐水中,运用倒推的思维来解答. 16.(2015•泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支? kaodian: 浓度问题.菁优网版权所有 分析: 浓度倒三角的妙用:红笔按85%优惠,黑笔按80%优惠,结果少付18%,相当于按82%优惠,可按浓度问题进行配比.与其他题不同的地方在于红、黑两种笔的单价不同,要把这个因素考虑进去.然后就可以按比例分配这66支笔了. 解答: 解:1﹣18%=82%; 红笔每支多付: 5×(85%﹣82%), =5×3%, =0.15(元); 黑笔每支少付: 9×(82%﹣80%), =9×2%, =0.18(元); 红笔总共多付的钱等于黑笔总共少付的钱,红笔与黑笔数量之比是0.15与0.18的反比,即: 0.18:0.15=6:5, 红笔是:66×=36(支), 答:他买了红笔36支. 点评: 解答此题的关键是求出红笔与黑笔数量之比,然后根据按比例分配的方法解答即可. 17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元? kaodian: 利润和利息问题.菁优网版权所有 分析: 由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双,每双利润为18+6n=6×(3+n)(元),所以每天获利润[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元; 两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24,而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,然后算出最大利润即可. 解答: 由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双, 每双利润为:18+6n=6×(3+n)(元), 所以每天获利润:[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元; 两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24, 而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,最大利润是: 54×(3+9)×(21﹣9)=7776(元); 答:生产第9个档次的皮鞋所获利润最大,最大利润是7776元. 点评: 解答此题的关键:认真分析题意,找出题中数量间的关系,进而根据每双鞋的利润、生产鞋的双数和总利润之间的关系解答即可. 18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人? kaodian: 列方程解含有两个未知数的应用题;百分数的实际应用.菁优网版权所有 分析: 如果女生也是增 4%,这样增加的人数是290×4%=11.6(人),比 13人少1.4人,少的1.4人就是因为女生本是增加5%,而算成4%,少算了上年度女生的1%,用除法可求出上年度女生的人数,根据“上年度男、女生共290人”算出上年度男生的人数,又因为4%,5%的单位“1”是上年度女生和男生,所以用乘法可算出本年度男女生人数. 解答: 解:如果女生也是增加 4%,这样增加的人数是:290×4%=11.6(人), 女生少算了:13﹣11.6=1.4(人), 上年度女生是:1.4÷(5%﹣4%)=140(人), 上年度男生有:290﹣140=150(人), 本年度男生有:150×(1+4%)=156(人), 本年度女生有:140×(1+5%)=147(人), 答:本年度该校有男生156人,女生147人. 点评: 解此题的关键是先算出上年度男女生的人数,再根据增加的比算出本年度的男女生人数. 19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比. kaodian: 简单图形的折叠问题;比的意义;三角形的周长和面积.菁优网版权所有 分析: 首先,根据△ADE和△DEC的高相等,那么可推出这两个三角形的面积之比,等于这两个三角形的底边之比为(15﹣9):9=6:9=2:3.三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4 解答: 解:因为BC=CE=9, 所以AE=15﹣9=6(厘米); 因为△ADE和△DEC的高相等, 所以△ADE和△DEC的面积比为(15﹣9):9=6:9=2:3; 又因为三角形BCD与三角形CDE面积相等. 所以三角形ADE与三角形ABC的面积之比为2:8 即1:4. 答:三角形ADE与三角形ABC面积之比为1:4. 点评: 此题重点考查等高的两个三角形的面积之间的关系.如果在两个三角形中,底边上的高相等,这两个三角形的面积比等于底边之比. 20.(2012•长春)成本0.25元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣? kaodian: 利润和利息问题.菁优网版权所有 分析: 此题可以先求出每本练习本的预定利润为:0.25×40%=0.1元,则预定价格为:0.25+0.25×40%=0.35元,那么预定总利润就是:1200×0.1=120元,销掉80%得到的利润就是:1200×80%×0.1=96(元),而实际获得的利润为:120×86%=103.2,所以剩下的20%的利润是103.2﹣96=7.2元,由此可以求得剩下的每本的利润为:7.2÷(1200×20%)=0.03元,那么剩下的练习本的单价为:0.03+0.25=0.28元,0.28÷0.35=0.8,故剩下的练习本出售时按定价打了八折. 解答: 解:预定价格为:0.25+0.25×40%=0.35(元), 预定利润为:0.25×40%=0.1(元), 预定总利润为:0.1×1200=120(元), 剩下的20%的练习本的每一本价格为: (120×86%﹣120×80%)÷(1200×20%)+0.25, =(103.2﹣96)÷240+0.25, =7.2÷240+0.25, =0.03+0.25, =0.28(元), 0.28÷0.35=0.8 答:剩下的练习本出售时按定价打了8折. 点评: 此题的解题过程有点复杂,只要抓住先求得预定价格,和剩下的20%的练习本的价格为做题思路,即可解决问题 21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书? kaodian: 分数和百分数应用题(多重条件).菁优网版权所有 分析: 甲比乙多的数量恰好是两人总数的,把差1份,和4份,用和差问题来算一下,大数为:(4+1)÷2=2.5,小数:(4﹣1)÷2=1.5,,得甲是2.5份,乙是1.5份,甲与乙的比是5:3.同理,甲给乙20本后,甲与乙的比是5:7;因为甲给乙20本书,甲减少多少,乙就增加多少,甲乙两人共有书的总数不变,在这里8与12的最小公倍数是24份: 5:3=15:9,5:7=10:14 观察比较甲从15份变为10份,是因为少了20本书,因此每份是4本,共有书就为4×(15+9)=96本 解答: 解:甲比乙多的数量恰好是两人总数的, 甲:(4+1)÷2=2.5(份), 乙:4﹣2.5=1.5(份), 甲:乙=2.5:1.5=5:3=15:9; 那么乙比甲多的数量恰好是两恰好是两人总数的, 乙:(1+6)÷2=3.5(份), 甲:6﹣3.5=2.5份, 甲:乙=2.5:3.5=5:7=10:14, 每份:20÷(15﹣10)=4(本), 一共有:4×(15+9)=96(本). 答:他们共有96本书. 点评: 根据和差问题求出他们前后书的本数的比是完成本题的关键. 22.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比. kaodian: 比的应用.菁优网版权所有 分析: 由题意可知:设乙有5x本书,则甲有5x﹣18本书,丙有4x本书,再据“甲、乙、丙三位同学共有图书108本”即可列方程求出每人的图书本数,从而求得甲、乙、丙三人所有的图书数之比. 解答: 解:设乙有5x本书,则甲有5x﹣18本书,丙有4x本书, 则有5x+5x﹣18+4x=108, 14x=108+18, 14x=126, x=9; 甲有图书:5×9﹣18=27(本), 已有图书:5×9=45(本), 丙有图书:4×9=36(本); 所以图书数量比为:27:45:36=3:5:4; 答:甲、乙、丙三人所有的图书数之比3:5:4. 点评: 解答此题的关键是:灵活的设未知数,分别求出各自的图书数量,即可求出图书数之比 23.一个容器内已注满水,有大、中、小三个球.第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中,现在知道每次从容器中溢出水量的情况是,第一次是第二次的,第三次是第一次的2.5倍,求三个球的体积之比. kaodian: 比的应用.菁优网版权所有 分析: 假设小球溢出的水量为1个单位,第二次把中球沉入水中是第一次的3倍,说明中球的体积是1+3=4个单位. 第三次把小球和大球一起沉入水中是一次的2.5倍,小球与大球的体积和是4+2.5=6.5个单位,大球的体积是6.5﹣1=5.5个单位,从而可以求出三个球的体积比. 解答: 解:假设小球溢出的水量为1个单位,第二次把中球沉入水中是第一次的3倍, 说明中球的体积是1+3=4个单位. 第三次把小球和大球一起沉入水中是一次的2.5倍, 小球与大球的体积和是4+2.5=6.5个单位, 大球的体积是6.5﹣1=5.5个单位, 三个球的体积之比是:1:4:5.5=2:8:11. 答:三个球的体积之比是:2:8:11. 点评: 解答此题的主要依据是:排出的水的体积就等于放入水中的物体的体积. 24.某种密瓜每天减价20%.第一天妈妈按定价减价20%买了3个密瓜,第二天妈妈又买了- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 第六 分数 百分数 应用题 教师版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文