2022年普通高等学校招生全国统一考试数学(文)试题(四川卷详解).docx
《2022年普通高等学校招生全国统一考试数学(文)试题(四川卷详解).docx》由会员分享,可在线阅读,更多相关《2022年普通高等学校招生全国统一考试数学(文)试题(四川卷详解).docx(7页珍藏版)》请在咨信网上搜索。
2022·四川卷(文科数学) 1.[2022·四川卷] 集合A={x|(x+1)(x-2)≤0},集合B为整数集,那么A∩B=( ) A.{-1,0}B.{0,1} C.{-2,-1,0,1}D.{-1,0,1,2} 1.D[解析]由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B={-1,0,1,2}.应选D. 2.、[2022·四川卷] 在“世界读书日〞前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ) A.总体 B.个体 C.样本的容量 D.从总体中抽取的一个样本 2.A[解析]根据抽样统计的概念可知,统计分析的对象全体叫做“总体〞.应选A. 3.[2022·四川卷] 为了得到函数y=sin(x+1)的图像,只需把函数y=sinx的图像上所有的点( ) A.向左平行移动1个单位长度 B.向右平行移动1个单位长度 C.向左平行移动π个单位长度 D.向右平行移动π个单位长度 3.A[解析]由函数y=sin x的图像变换得到函数y=sin(x+1)的图像,应该将函数y=sinx图像上所有的点向左平行移动1个单位长度,应选A. 图11 4.[2022·四川卷] 某三棱锥的侧视图、俯视图如图11所示,那么该三棱锥的体积是(锥体体积公式:V=Sh,其中S为底面面积,h为高)( ) A.3B.2 C.D.1 4.D[解析]由图可知,三棱锥的底面为边长为2的正三角形,左侧面垂直于底面,且为边长为2的正三角形,所以该三棱锥的底面积S=2,高h=,所以其体积V=Sh==1,应选D. 5.[2022·四川卷] 假设a>b>0,c<d<0,那么一定有( ) A.>B.< C.>D.< 5.B[解析]因为c<d<0,所以<<0,即->->0,与a>b>0对应相乘得,->->0, 所以<,应选B. 6.、[2022·四川卷] 执行如图12的程序框图,如果输入的x,y∈R,那么输出的S的最大值为( ) 图12 A.0B.1 C.2D.3 6.C[解析]题中程序输出的是在的条件下S=2x+y的最大值与1中较大的数.结合图像可得,当x=1,y=0时,S=2x+y取最大值2,2>1,应选C. 7.、[2022·四川卷] b>0,log5b=a,lgb=c,5d=10,那么以下等式一定成立的是( ) A.d=acB.a=cd C.c=adD.d=a+c 7.B[解析]因为5d=10,所以d=log510,所以cd=lgb·log510=log5b=a,应选B. 8.、[2022·四川卷] 如图13所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,那么河流的宽度BC等于( ) 图13 A.240(-1)mB.180(-1)m C.120(-1)mD.30(+1)m 8.C[解析]由题意可知,AC==120. ∠BAC=75°-30°=45°,∠ABC=180°-45°-30°=105°,所以sin∠ABC=sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=. 在△ABC中,由正弦定理得=, 于是BC===120(-1)(m).应选C. 9.、[2022·四川卷] 设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),那么|PA|+|PB|的取值范围是( ) A.[,2] B.[,2] C.[,4] D.[2,4] 9.B[解析]由题意可知,定点A(0,0),B(1,3),且两条直线互相垂直, 那么其交点P(x,y)落在以AB为直径的圆周上, 所以|PA|2+|PB|2=|AB|2=10,即|PA|+|PB|≥|AB|=. 又|PA|+|PB|== ≤ =2, 所以|PA|+|PB|∈[,2],应选B. 10.[2022·四川卷] F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),那么△ABO与△AFO面积之和的最小值是( ) A.2B.3 C.D. 10.B[解析]由题意可知,F.设A(y,y1),B(y,y2),∴·=y1y2+yy=2, 解得y1y2=1或y1y2=-2.又因为A,B两点位于x轴两侧,所以y1y2<0,即y1y2=-2. 当y≠y时,AB所在直线方程为y-y1=(x-y)=(x-y), 令y=0,得x=-y1y2=2,即直线AB过定点C(2,0). 于是S△ABO+S△AFO=S△ACO+S△BCO+S△AFO=2|y1|+2|y2|+|y1|=(9|y1|+8|y2|)≥2=3,当且仅当9|y1|=8|y2|且y1y2=-2时,等号成立.当y=y时,取y1=,y2=-,那么AB所在直线的方程为x=2,此时求得S△ABO+S△AFO=22+=.而>3,应选B. 11.[2022·四川卷] 双曲线-y2=1的离心率等于________. 11.[解析]由及双曲线的概念知,a=2,b=1,故c==, 故该双曲线的离心率e==. 12.、[2022·四川卷] 复数=________. 12.-2i[解析]==-2i. 13.[2022·四川卷] 设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=那么f=________. 13.1[解析]由题意可知,f=ff=-4+2=1. 14.、[2022·四川卷] 平面向量a=(1,2),b=(4,2),c=ma+b(m∈R),且c与a的夹角等于c与b的夹角,那么m=________. 14.2[解析]c=ma+b=(m+4,2m+2),由题意知=,即=,即5m+8=,解得m=2. 15.、、[2022·四川卷] 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题: ①设函数f(x)的定义域为D,那么“f(x)∈A〞的充要条件是“∀b∈R,∃a∈D,f(a)=b〞; ②假设函数f(x)∈B,那么f(x)有最大值和最小值; ③假设函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,那么f(x)+g(x)∈/B; ④假设函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,那么f(x)∈B. 其中的真命题有________.(写出所有真命题的序号) 15.①③④[解析]假设f(x)∈A,那么函数f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确. 取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得函数f(x)的值域包含于[-M,M]=[-1,1],但此时函数f(x)没有最大值和最小值,故②错误. 当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(x)+f(a0)=b0-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确. 对于f(x)=aln(x+2)+(x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)=(x>-2).易知f(x)∈,所以存在正数M=,使得f(x)∈[-M,M],故④正确 16.、[2022·四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c〞的概率; (2)求“抽取的卡片上的数字a,b,c不完全相同〞的概率. 16.解:(1)由题意,(a,b,c)所有的可能为: (1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a+b=c〞为事件A, 那么事件A包括(1,1,2),(1,2,3),(2,1,3),共3种, 所以P(A)==. 因此,“抽取的卡片上的数字满足a+b=c〞的概率为. (2)设“抽取的卡片上的数字a,b,c不完全相同〞为事件B, 那么事件B包括(1,1,1),(2,2,2),(3,3,3),共3种. 所以P(B)=1-P(B)=1-=. 因此,“抽取的卡片上的数字a,b,c不完全相同〞的概率为. 17.、、、[2022·四川卷] 函数f(x)=sin. (1)求f(x)的单调递增区间; (2)假设α是第二象限角,f=coscos2α,求cosα-sinα的值. 17.解:(1)因为函数y=sinx的单调递增区间为,k∈Z, 由-+2kπ≤3x+≤+2kπ,k∈Z,得-+≤x≤+,k∈Z, 所以函数f(x)的单调递增区间为,k∈Z. (2)由,得sin=cos(cos2α-sin2α). 所以sinαcos+cosαsin= (cos2α-sin2α), 即sinα+cosα=(cosα-sinα)2(sinα+cosα). 当sinα+cosα=0时,由α在第二象限内,得α=+2kπ,k∈Z. 此时,cosα-sinα=-. 当sinα+cosα≠0时,(cosα-sinα)2=. 由α是第二象限角,得cosα-sinα<0,此时cosα-sinα=-. 综上所述,cosα-sinα=-或-. 18.、[2022·四川卷] 在如图14所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (1)假设AC⊥BC,证明:直线BC⊥平面ACC1A1. (2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC请证明你的结论. 图14 18.解:(1)证明:因为四边形ABB1A1和ACC1A1都是矩形, 所以AA1⊥AB,AA1⊥AC. 因为AB,AC为平面ABC内的两条相交直线, 所以AA1⊥平面ABC. 因为直线BC⊂平面ABC,所以AA1⊥BC. 又由,AC⊥BC,AA1,AC为平面ACC1A1内的两条相交直线, 所以BC⊥平面ACC1A1. (2)取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点. 图14 由,O为AC1的中点. 连接MD,OE,那么MD,OE分别为△ABC,△ACC1的中位线, 所以MD綊AC,OE綊AC, 因此MD綊OE. 连接OM,从而四边形MDEO为平行四边形,所以DE∥MO. 因为直线DE⊄平面A1MC,MO⊂平面A1MC. 所以直线DE∥平面A1MC. 即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC. 19.、、[2022·四川卷] 设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图像上(n∈N*). (1)证明:数列{bn}为等比数列; (2)假设a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-,求数列{anb}的前n项和Sn. 19.解:(1)证明:由得,bn=2an>0, 当n≥1时,=2an+1-an=2d. 故数列{bn}是首项为2a1,公比为2d的等比数列. (2)函数f(x)=2x在点(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x-a2), 其在x轴上的截距为a2-. 由题意知,a2-=2-, 解得a2=2, 所以d=a2-a1=1,an=n,bn=2n,anb=n·4n. 于是,Sn=14+242+343+…+(n-1)4n-1+n4n, 4Sn=142+243+…+(n-1)4n+n4n+1, 因此,Sn-4Sn=4+42+…+4n-n·4n+1=-n·4n+1=, 所以,Sn=. 20.、[2022·四川卷] 椭圆C:+=1(a>b>0)的左焦点为F(-2,0),离心率为. (1)求椭圆C的标准方程; (2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积. 20.解:(1)由可得,=,c=2,所以a=. 又由a2=b2+c2,解得b=,所以椭圆C的标准方程是+=1. (2)设T点的坐标为(-3,m),那么直线TF的斜率kTF==-m. 当m≠0时,直线PQ的斜率kPQ=,直线PQ的方程是x=my-2. 当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式. 设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得 消去x,得(m2+3)y2-4my-2=0, 其判别式Δ=16m2+8(m2+3)>0. 所以y1+y2=,y1y2=, x1+x2=m(y1+y2)-4=. 因为四边形OPTQ是平行四边形,所以=,即(x1,y1)=(-3-x2,m-y2). 所以 解得m=±1. 此时,四边形OPTQ的面积 S四边形OPTQ=2S△OPQ=2·|OF|·|y1-y2|= 2=2. 21.、[2022·四川卷] 函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)假设f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1. 21.解:(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a. 当x∈[0,1]时,g′(x)∈[1-2a,e-2a]. 当a≤时,g′(x)≥0,所以g(x)在[0,1]上单调递增, 因此g(x)在[0,1]上的最小值是g(0)=1-b; 当a≥时,g′(x)≤0,所以g(x)在[0,1]上单调递减, 因此g(x)在[0,1]上的最小值是g(1)=e-2a-b; 当<a<时,令g′(x)=0,得x=ln(2a)∈(0,1), 所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增, 于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b. 综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b; 当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b; 当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b. (2)证明:设x0为f(x)在区间(0,1)内的一个零点,那么由f(0)=f(x0)=0可知, f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减. 那么g(x)不可能恒为正,也不可能恒为负. 故g(x)在区间(0,x0)内存在零点x1. 同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点. 由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点; 当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意. 所以<a<. 此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增. 因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有 g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0有a+b=e-1<2,有 g(0)=a-e+2>0,g(1)=1-a>0. 解得e-2<a<1. 所以,函数f(x)在区间(0,1)内有零点时,e-2<a<1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 普通高等学校 招生 全国 统一 考试 数学 试题 四川 详解
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文