一次函数与四边形综合题——轻舟数学.doc
《一次函数与四边形综合题——轻舟数学.doc》由会员分享,可在线阅读,更多相关《一次函数与四边形综合题——轻舟数学.doc(20页珍藏版)》请在咨信网上搜索。
一次函数与四边形综合题——轻舟数学 一次函数与四边形综合题——轻舟数学 一.选择题(共1小题) 1.(2011•杭州自主招生)如图,直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=﹣2x+m(m>n)的图象.若PA与y轴交于点Q,且S四边形PQOB=,AB=2,则m,n的值分别是( ) A. 3,2 B. 2,1 C. D. 1, 二.解答题(共16小题) 2.(2009春•静安区期末)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形. (1)求点A、B、D的坐标; (2)求直线BD的表达式. 3.(2010秋•常州期末)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D. (1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积); (2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由. (3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k的取值范围是 . 4.(2012•绥化)如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4). (1)求G点坐标; (2)求直线EF解析式; (3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由. 5.(2014•温州)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒. (1)当点C运动到线段OB的中点时,求t的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设▱PCOD的面积为S. ①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值; ②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围. 6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由; (3)当∠1=∠2时,求直线PE的解析式. 7.(2011•牡丹江)如图,将矩形OABC放置在平面直角坐标系中,点D在边0C上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点F处,且tan∠BFD=.若线段OA的长是一元二次方程x2﹣7x﹣8=0的一个根,又2AB=30A.请解答下列问题: (1)求点B、F的坐标; (2)求直线ED的解析式: (3)在直线ED、FD上是否存在点M、N,使以点C、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由. 8.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D. (1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则: ①BC的长为 ;②DE的长为 ;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系? (2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想; (3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式. 9.(2013•会泽县校级模拟)如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF. 10.(2013•大连二模)如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°. (1)请直接写出线段PG与PC的位置关系及的值. (2)若将图1中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图2.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果. (3)在图1中,若∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请直接写出的值(用含α的式子表示). 11.(2013•重庆模拟)如图,以矩形OABC的顶点O为原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=4厘米,OC=3厘米,线段OA上一动点D,以1厘米/s的速度从O点出发向终点A运动,线段AB上一动点E也以1厘米/s的速度从A点出发向终点B运动.当E点到达终点B后,D点继续运动直至到达终点A. (1)试写出多边形ODEBC的面积S(平方厘米)与运动时间t(s)之间的函数关系式. (2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. (3)在某一时刻将△BED沿着BD翻折,使点E恰好落在BC边的点F上.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使四边形MNFE的周长最小,试求出此时点M、N的坐标. 12.(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题. (1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程: 证明:如图1,取AB的中点M,连接EM. ∵∠AEF=90° ∴∠FEC+∠AEB=90° 又∵∠EAM+∠AEB=90° ∴∠EAM=∠FEC ∵点E,M分别为正方形的边BC和AB的中点 ∴AM=EC 又可知△BME是等腰直角三角形 ∴∠AME=135° 又∵CF是正方形外角的平分线 ∴∠ECF=135° ∴△AEM≌△EFC(ASA) ∴AE=EF (2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论. (3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由. 13.(2012•葫芦岛一模)在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG. (1)如图1,证明平行四边形ECFG为菱形; (2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数; (3)如图3,若∠ABC=120°,请直接写出∠BDG的度数. 14.(2010•乐山)在△ABC中,D为BC的中点,O为AD的中点,直线l过点O.过A、B、C三点分别做直线l的垂线,垂足分别是G、E、F,设AG=h1,BE=h2,CF=h3. (1)如图1所示,当直线l⊥AD时(此时点G与点O重合).求证:h2+h3=2h1; (2)将直线l绕点O旋转,使得l与AD不垂直. ①如图2所示,当点B、C在直线l的同侧时,猜想(1)中的结论是否成立,请说明你的理由; ②如图3所示,当点B、C在直线l的异侧时,猜想h1、h2、h3满足什么关系.(只需写出关系,不要求说明理由) 15.(2009•哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值. 16.(2014春•武汉月考)在平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y轴上,点A(0,m),点C(n,0),且m、n满足+(n﹣2)2=0. (1)求点A、C的坐标; (2)如图1,点D为第一象限内一动点,连CD、BD、OD,∠ODB=90°,试探究线段CD、OD、BD之间的数量关系,并证明你的结论; (3)如图2,点F在线段OA上,连BF,作OM⊥BF于M,AN⊥BF于N,当F在线段OA上运动时(不与O、A重合),的值是否变化?若变化,求出变化的范围;若不变,求出其值. 17.(2014春•青山区期末)如图(1),直线y=﹣x+3分别与y轴、x轴交于A、C两点,以OA、OC为边作正方形OABC,E是边OC上一点,将直线AE绕A点逆时针旋转45°与过E点垂直于AE的直线交于点D. (1)求A、C两点的坐标; (2)若直线AD的解析式为y=﹣x+3,求直线DE的解析式; (3)如图(2),若∠OAE=30°,过点E作EF⊥AC于点H,交AD于点F,求的值.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 四边形 综合 轻舟 数学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文