2023版高考数学一轮复习第十章平面解析几何10.7抛物线练习理北师大版.doc
《2023版高考数学一轮复习第十章平面解析几何10.7抛物线练习理北师大版.doc》由会员分享,可在线阅读,更多相关《2023版高考数学一轮复习第十章平面解析几何10.7抛物线练习理北师大版.doc(9页珍藏版)》请在咨信网上搜索。
1、10.7 抛物线核心考点精准研析考点一抛物线的定义及标准方程1.抛物线y2=4x的焦点为F,定点P(4,-2),在抛物线上找一点M,使得|PM|+|MF|最小,那么点M的坐标为()A.(2,-2)B.(1,2)C.(1,-2)D.(-1,2)2.直线l1:4x-3y+6=0和l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.B.2C.D.33.(2023保定模拟)设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5.假设以MF为直径的圆过点A(0,2),那么C的方程为()A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或
2、y2=16xD.y2=2x或y2=16x4.设P是抛物线y2=4x上的一个动点,F为焦点,假设B(3,2),那么|PB|+|PF|的最小值为_.5.抛物线C的顶点为坐标原点,对称轴为坐标轴,直线l过抛物线C的焦点F,且与抛物线的对称轴垂直,l与C交于A,B两点,且|AB|=8,M为抛物线C准线上一点,那么ABM的面积为_.【解析】1.选C.过P作PM垂直于抛物线的准线,交抛物线于点M,交准线于点N,那么|PM|+|MF|=|PM|+|MN|=|PN|,此时|PM|+|MF|最小,点M纵坐标为-2,故横坐标为1,所以点M的坐标为(1,-2).2.选B.由题可知l2:x=-1是抛物线y2=4x的准
3、线,设抛物线的焦点(1,0)为F,那么动点P到l2的距离等于|PF|,那么动点P到直线l1 和直线l2的距离之和的最小值,即焦点F到直线l1:4x-3y+6=0的距离,所以最小值是=2.3.选C.由得抛物线的焦点F,设点M(x0,y0),那么=,=.由得,=0,即-8y0+16=0,因而y0=4,M.由|MF|=5,得 =5.又p0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.4.如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,那么|P1Q|=|P1F|,那么有|PB|+|PF|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.答案:45.不妨设抛物线方程
4、为y2=2px(p0),那么焦点F,A,B,将A代入抛物线方程,可得2p=42,得p=4,那么准线方程为x=-2,设M(-2,t),那么SABM=|AB|p=44=16.答案:161.抛物线定义的应用利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线,这是解决有关抛物线距离问题的有效途径.2.求抛物线的标准方程的方法(1)定义法根据抛物线的定义,确定p的值(系数p是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择.(2)待定系数法根据抛物线焦点是在x轴上还是在y轴上,设出相应
5、形式的标准方程,然后根据条件确定关于p的方程,解出p,从而写出抛物线的标准方程.当焦点位置不确定时,有两种方法解决:方法一分情况讨论,注意要对四种形式的标准方程进行讨论,对于焦点在x轴上的抛物线,为防止开口方向不确定可分为y2=2px(p0)和y2=-2px(p0)两种情况求解方法二设成y2=mx(m0),假设m0,开口向右;假设m0)的焦点为F,过F的直线l交抛物线于A,B两点(点A在第一象限),假设直线l的倾斜角为,那么=()A.B.C.D.2.(2023濮阳模拟)抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,那么直线l的斜率
6、k为 ()A.B.1C. D.3.(2023全国卷)抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)假设|AF|+|BF|=4,求l的方程.(2)假设=3,求|AB|.【解题导思】序号联想解题1一看到抛物线上的点到焦点或到准线的距离问题,即联想到利用抛物线的定义进行转化2当条件中出现弦的中点(即中点弦问题)时,应立即考虑到设而不求(点差)法3当条件中出现过抛物线焦点的直线时,应立即考虑到抛物线焦点弦的有关结论【解析】1.选A.过A、B分别作准线的垂线,垂足分别为M,N,作AEBN,垂足为E,设|AF|=m,|BF|=n,那么由抛物线的定义得|AM|=|
7、AF|=m,|BN|=|BF|=n,|AB|=m+n,|BE|=n-m,因为ABN=60,于是=,解得n=3m,那么=.2.选C.抛物线C:y2=4x的焦点F(1,0),设A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0),那么x0=,y0=,由弦AB的中点M到抛物线C的准线的距离为5,即x0+=5,那么x0=4,由两式相减得(y1+y2)(y1-y2)=4(x1-x2),那么=,即k=,那么=,即y0=,所以直线l的斜率k=.3.设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 第十 平面 解析几何 10.7 抛物线 练习 北师大
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。