2017-2018学年高中数学人教A版必修1学案:2.2对数函数知识导学案-.doc
《2017-2018学年高中数学人教A版必修1学案:2.2对数函数知识导学案-.doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学人教A版必修1学案:2.2对数函数知识导学案-.doc(4页珍藏版)》请在咨信网上搜索。
2.2 对数函数 知识导学 一般地,对于一个数a(a>0且a≠1),如果a的b次幂等于N,即ab=N,那么就称b是以a为底的N的对数,记作logaN=b,其中,a叫做对数的底数,N叫做真数. 在实际应用中,一定要注意指数式与对数式的等价性,即logaN=bab=N. 对数的运算性质就是把真数的乘、除、乘方降级为对数的加、减、乘运算. 一般地,我们称logaN=为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程. 有了对数的概念后,要求log0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数. 有了常用对数和自然对数,再利用对数的运算性质,我们就可以求log0.840.5的值了. 对数恒等式:=N的证明也很简单,只要紧扣对数式的定义即可证明. ∵ab=N,∴b=logaN. ∴ab==N, 即=N. 如=5, =6等.要熟记对数恒等式的形式,会使用这一公式化简对数式. 作对数函数的图象一般有两种方法:一是描点法,即通过列表、描点、连线的方法作出对数函数的图象;二是通过观察它和指数函数图象之间的关系,并利用它们之间的关系作图. 比较大小是对数函数性质应用的常见题型.当底数相同时,可利用对数函数的性质比较;当底数和指数不同时,要借助于中间量进行比较.比较两个对数式的大小,底相同时,可利用对数性质进行比较.不同类的函数值的大小常借助中间量0、1等进行比较. 对数函数y=logax(a>0且a≠1)与指数函数y=ax(a>0且a≠1)互为反函数,这两个函数的图象关于直线y=x对称. 因此,我们只要画出和y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax的图象,然后根据图象特征得出对数函数的性质. 疑难导析 通过将对数函数与指数函数的图象进行对比,可以发现:当a>1或0<a<1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质loga1=0a0=1是分不开的. 对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a>0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域. 性质靠图象体现,图象靠性质总结. 数形结合不仅是我们研究函数的一个重要工具,同时也是我们在解题时的常用方法.借助图形的形象直观,可以迅速准确地得到相关问题的答案,尤其是选择题,能结合图象来思考,会事半功倍. 问题导思 对数换底公式口诀: 换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子. 对数函数的运算性质的助记口诀: 积的对数变加法,商的对数变为减, 幂的乘方取对数,要把指数提到前. 对数函数y=logax(a>0且a≠1)的性质的助记口诀: 对数增减有思路,函数图象看底数, 底数只能大于0,等于1来也不行, 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减. 无论函数增和减,图象都过(1,0)点. 比较两个对数型的数的大小是一种常见的题型,好好把握. 两个同底数的对数比较大小的一般步骤: ①确定所要考查的对数函数; ②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两对数值的大小. 对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握. 典题导考 绿色通道 利用数形结合的方法可以快速地比较两个对数的大小,有时也可以画出函数的略图.由此可见,学会一种思考方法比解决一道题目更重要. 典题变式 比较下列各组数中两个值的大小: (1)log23.4,log28.5; (2)log0.31.8,log0.32.7; (3)loga5.1,loga5.9(a>0,a≠1). 答案:(1)log23.4<log28.5; (2)log0.31.8>log0.32.7; (3)当a>1时,loga5.1<loga5.9; 当0<a<1时,loga5.1>loga5.9. 绿色通道 本题的求解中,分解化简和方程思想的运用在处理很多问题中具有一般性. 典题变式 1.已知3a=2,用a表示log34-log36. 答案:a-1. 2.已知log32=a,3b=5,用a、b表示log3. 答案: (a+b+1). 绿色通道 研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性. 典题变式 1.已知函数f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( ) A.GF B.G=F C.FG D.F∩G= 答案:A 2.求函数y=(-x2+4x+5)的定义域和值域. 答案:函数的定义域为{x|-1<x<5};值域为{y|y≥-2}. 3.已知f(x)=loga (a>0且a≠1). (1)求函数的定义域; (2)讨论函数的单调性; (3)求使f(x)>0的x的取值范围. 解答:(1)定义域为(-1,1). (2)当a>1时,f(x)为(-1,1)上的增函数; 当0<a<1时,f(x)为(-1,1)上的减函数. (3)当a>1时,f(x)>0的解为(0,1); 当0<a<1时,f(x)>0的解为(-1,0). 绿色通道 画函数图象是研究函数变化规律的重要手段,画函数图象通常有两种方法:列表法和变换法.变换法有如下几种: 平移变换:y=f(x+a),将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;y=f(x)+a,将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位而得到. 翻折变换:y=|f(x)|,将y=f(x)的图象在x轴下方部分沿x轴翻折到x轴的上方,其他部分不变;y=f(|x|),它是一个偶函数,x≥0时,图象与y=f(x)的图象完全一样,当x≤0时,其图象与x≥0时的图象关于y轴对称. 对称变换:y=-f(x),它的图象与函数y=f(x)的图象关于x轴对称;y=f(-x),它的图象与y=f(x)的图象关于y轴对称;y=-f(-x),它的图象与y=f(x)的图象关于原点成中心对称. 伸缩变换:y=f(ax)(a>0),将y=f(x)图象上各点的横坐标压缩(a>1)或伸长(0<a<1)到原来的a倍,纵坐标不变;y=af(x)(a>0),将y=f(x)图象上各点的横坐标不变,纵坐标压缩(0<a<1)或伸长(a>1)到原来的a倍. 典题变式若loga2<logb2<0,则a、b满足的关系是( ) A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<1 答案:D 绿色通道 本题两小题的函数的定义域与值域正好错位.(1)中函数的定义域为R,由判别式小于零确保;(2)中函数的值域为R,由判别式不小于零确定. 典题变式设a≠0,对于函数f(x)=log3(ax2-x+a), (1)若x∈R,求实数a的取值范围; (2)若f(x) ∈R,求实数a的取值范围. 答案:(1)a>; (2)0<a≤.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 2018 年高 学人 必修 2.2 对数 函数 知识 导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文