2022年湖北省孝感市中考数学试题(解析版).docx
《2022年湖北省孝感市中考数学试题(解析版).docx》由会员分享,可在线阅读,更多相关《2022年湖北省孝感市中考数学试题(解析版).docx(8页珍藏版)》请在咨信网上搜索。
2022年湖北省孝感市中考数学试题 一、选择题〔共10小题,每题3分,总分值30分〕 1.以下各数中,最小的数是〔 〕 A.5 B.﹣3 C.0 D.2 【答案】B 【解析】 试题分析:根据有理数大小比较的法那么解答即可.﹣3<0<2<5,那么最小的数是﹣3 考点:有理数大小比较. 2.如图,直线a,b被直线c所截,假设a∥b,∠1=110°,那么∠2等于〔 〕 A.70° B.75° C.80° D.85° 【答案】A 考点:平行线的性质. 3.以下运算正确的选项是〔 〕 A.a2+a2=a4B.a5﹣a3=a2C.a2•a2=2a2D.〔a5〕2=a10 【答案】D 【解析】 试题分析:分别利用合并同类项法那么以及同底数幂的乘法运算法那么和幂的乘方运算法那么分别化简判断即可. A、a2+a2=2a2,故此选项错误; B、a5﹣a3,无法计算,故此选项错误; C、a2•a2=a4,故此选项错误; D、〔a5〕2=a10,正确. 考点:(1)、幂的乘方与积的乘方;(2)、合并同类项;(3)、同底数幂的乘法. 4.如图是由四个相同的小正方体组成的几何体,那么这个几何体的主视图是〔 〕 A.B.C.D. 【答案】C 考点:简单组合体的三视图. 5.不等式组的解集是〔 〕 A.x>3 B.x<3 C.x<2 D.x>2 【答案】A 【解析】 试题分析:首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集. ,解①得:x>2,解②得:x>3,那么不等式的解集是:x>3. 考点:解一元一次不等式组. 6.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,假设OA=2,将三角板绕原点O顺时针旋转75°,那么点A的对应点A′的坐标为〔 〕 A.〔,﹣1〕 B.〔1,﹣〕 C.〔,﹣〕 D.〔﹣,〕 【答案】C ∵将三角板绕原点O顺时针旋转75°, ∴∠AOA′=75°,OA′=OA. ∴∠COA′=45°. ∴OC=2×=,CA′=2×=. ∴A′的坐标为〔,﹣〕. 考点:坐标与图形变化-旋转. 7.在2022年体育中考中,某班一学习小组6名学生的体育成绩如下表,那么这组学生的体育成绩的众数,中位数,方差依次为〔 〕 成绩〔分〕 27 28 30 人数 2 3 1 A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,5 【答案】A 【解析】 试题分析:根据众数、中位数的定义和方差公式分别进行解答即可. 这组数据28出现的次数最多,出现了3次,那么这组数据的众数是28; 把这组数据从小到大排列,最中间两个数的平均数是〔28+28〕÷2=28,那么中位数是28; 这组数据的平均数是:〔27×2+28×3+30〕÷6=28, 那么方差是:×[2×〔27﹣28〕2+3×〔28﹣28〕2+〔30﹣28〕2]=1; 考点:(1)、方差;(2)、中位数;(3)、众数 8.“科学用眼,保护视力〞是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y〔度〕与镜片焦距x〔m〕成反比例.如果500度近视眼镜片的焦距为0.2m,那么表示y与x函数关系的图象大致是〔 〕 A. B. C. D. 【答案】B 根据题意近视眼镜的度数y〔度〕与镜片焦距x〔米〕成反比例,设y=, 由于点〔0.2,500〕在此函数解析式上, ∴k=0.2×500=100, ∴y=. 考点:函数的图象. 9.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,那么AB的长为〔 〕 A.3 B.5 C.2或3 D.3或5 【答案】D 【解析】 考点:平行四边形的性质. 10.如图是抛物线y=ax2+bx+c〔a≠0〕的局部图象,其顶点坐标为〔1,n〕,且与x轴的一个交点在点〔3,0〕和〔4,0〕之间.那么以下结论: ①a﹣b+c>0; ②3a+b=0; ③b2=4a〔c﹣n〕; ④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根. 其中正确结论的个数是〔 〕 A.1 B.2 C.3 D.4 【答案】C 【解析】 试题分析:利用抛物线的对称性得到抛物线与x轴的另一个交点在点〔﹣2,0〕和〔﹣1,0〕之间,那么当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,那么可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,那么可对③进行判断;由于抛物线与直线y=n有一个公共点,那么抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断. ∵抛物线与x轴的一个交点在点〔3,0〕和〔4,0〕之间,而抛物线的对称轴为直线x=1, ∴抛物线与x轴的另一个交点在点〔﹣2,0〕和〔﹣1,0〕之间. ∴当x=﹣1时,y>0, 即a﹣b+c>0,所以①正确; ∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a, ∴3a+b=3a﹣2a=a,所以②错误; ∵抛物线的顶点坐标为〔1,n〕, ∴=n, ∴b2=4ac﹣4an=4a〔c﹣n〕,所以③正确; ∵抛物线与直线y=n有一个公共点, ∴抛物线与直线y=n﹣1有2个公共点, 考点:二次函数图象与系数的关系. 二、填空题〔共6小题,每题3分,总分值18分〕 11.假设代数式有意义,那么x的取值范围是. 【答案】x≥2 【解析】 试题分析:根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可. ∵代数式有意义, ∴x﹣2≥0, ∴x≥2. 考点:二次根式有意义的条件. 12.分解因式:2x2﹣8y2=. 【答案】2〔x+2y〕〔x﹣2y〕 考点:提公因式法与公式法的综合运用. 13.假设一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,那么圆锥的母线长是cm. 【答案】9 【解析】 试题分析:利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解. 设母线长为l,那么=2π×3 解得:l=9. 考点:圆锥的计算. 14. 九章算术 是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.〞其意思为:“今有直角三角形,勾〔短直角边〕长为8步,股〔长直角边〕长为15步,问该直角三角形内切圆的直径是多少步.〞该问题的答案是步. 【答案】6 【解析】 考点:三角形的内切圆与内心. 15.如图,双曲线y=与直线y=﹣x+6相交于A,B两点,过点A作x轴的垂线与过点B作y轴的垂线相交于点C,假设△ABC的面积为8,那么k的值为. 【答案】5 考点:反比例函数与一次函数的交点问题. 16.如图示我国汉代数学家赵爽在注解 周脾算经 时给出的“赵爽弦图〞,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为. 【答案】 【解析】 考点:(1)、勾股定理;(2)、全等三角形的判定;(3)、锐角三角函数的定义. 三、解答题〔共8小题,总分值72分〕 17.计算: +|﹣4|+2sin30°﹣32. 【答案】﹣1 【解析】 试题分析:直接利用特殊角的三角函数值以及结合绝对值、二次根式的性质分别化简求出答案. 试题解析:原式=3+4+1﹣9=﹣1. 考点:(1)、实数的运算;(2)、特殊角的三角函数值. 18.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 【答案】证明过程见解析 考点:全等三角形的判定与性质. 19.为弘扬中华优秀传统文化,我市教育局在全市中小学积极推广“太极拳〞运动.弘孝中学为争创“太极拳〞示范学校,今年3月份举行了“太极拳〞比赛,比赛成绩评定为A,B,C,D,E五个等级,该校七〔1〕班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答以下问题: 〔1〕该校七〔1〕班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;并补全条形统计图; 〔2〕A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生作为全班训练的示范者,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率. 【答案】(1)、50;144;图形见解析;(2)、 【解析】 试题解析:(1)、由题意可知总人数=4÷8%=50人; 扇形统计图中C等级所对应扇形的圆心角=20÷50×100%×360°=144°; 补全条形统计图如下列图: (2)、列表如下: 男 男 女 女 男 ﹣﹣﹣ 〔男,男〕 〔女,男〕 〔女,男〕 男 〔男,男〕 ﹣﹣﹣ 〔女,男〕 〔女,男〕 女 〔男,女〕 〔男,女〕 ﹣﹣﹣ 〔女,女〕 女 〔男,女〕 〔男,女〕 〔女,女〕 ﹣﹣﹣ 得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种, 所以恰好选到1名男生和1名女生的概率=. 考点:(1)、列表法与树状图法;(2)、扇形统计图;(3)、条形统计图. 20.如图,在Rt△ABC中,∠ACB=90°.∠ACB的平分线,交斜边AB于点D,过点D作AC的垂线,垂足为点E,假设CB=4,CA=6,那么DE=. 【答案】 【解析】 试题分析:根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论. 试题解析:∵DC是∠ACB的平分线, ∴∠BCD=∠ACD, ∵DE⊥AC,BC⊥AC, ∴DE∥BC,∴∠EDC=∠BCD, ∴∠ECD=∠EDC,∴DE=CE, ∵DE∥BC, ∴△ADE∽△ABC, ∴=, 设DE=CE=x,那么AE=6﹣x, 考点:三角形相似的应用 21.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2. 〔1〕求m的取值范围; 〔2〕当x12+x22=6x1x2时,求m的值. 试题解析:(1)、∵原方程有两个实数根,∴△=〔﹣2〕2﹣4〔m﹣1〕≥0, 整理得:4﹣4m+4≥0, 解得:m≤2; (2)、∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2, ∴〔x1+x2〕2﹣2x1•x2=6x1•x2, 即4=8〔m﹣1〕, 解得:m=. ∵m=<2, ∴符合条件的m的值为. 考点:(1)、根与系数的关系;(2)、根的判别式. 22.孝感市在创立国家级园林城市中,绿化档次不断提升.某校方案购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购置A种树木2棵,B种树木5棵,共需600元;购置A种树木3棵,B种树木1棵,共需380元. 〔1〕求A种,B种树木每棵各多少元 〔2〕因布局需要,购置A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下〔不考虑其他因素〕,实际付款总金额按市场价九折优惠,请设计一种购置树木的方案,使实际所花费用最省,并求出最省的费用. 【答案】(1)、A种树每棵100元,B种树每棵80元;(2)、当购置A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元. 【解析】 试题解析:(1)、设A种树每棵x元,B种树每棵y元,依题意得:, 解得. 答:A种树每棵100元,B种树每棵80元; (2)、设购置A种树木为a棵,那么购置B种树木为〔100﹣a〕棵, 那么a>3〔100﹣a〕, 解得a≥75. 设实际付款总金额是y元,那么y=0.9[100a+80〔100﹣a〕],即y=18a+7200. ∵18>0,y随a的增大而增大, ∴当a=75时,y最小. 即当a=75时,y最小值=18×75+7200=8550〔元〕. 答:当购置A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元. 考点:(1)、一次函数的应用;(2)、二元一次方程组的应用. 23.如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G. 〔1〕求证:AD平分∠CAB; 〔2〕假设OH⊥AD于点H,FH平分∠AFE,DG=1. ①试判断DF与DH的数量关系,并说明理由; ②求⊙O的半径. 【答案】(1)、证明过程见解析;(2)、DF=DH,理由见解析; 【解析】 试题解析:(1)、如图,连接OD, ∵⊙O与BC相切于点D, ∴OD⊥BC, ∵∠C=90°, ∴OD∥AC, ∴∠CAD=∠ODA, ∵OA=OD, ∴∠OAD=∠ODA, ∴∠CAD=∠BAD, ∴AD平分∠CAB. (2)、①DF=DH,理由如下:∵FH平分∠AFE, ∴∠AFH=∠EFH, 又∠DFG=∠EAD=∠HAF, ∴∠DFG=∠EAD=∠HAF, ∴∠DFG+∠GFH=∠HAF+∠HFA, 即∠DFH=∠DHF, ∴DF=DH. ②设HG=x,那么DH=DF=1+x, ∵OH⊥AD, ∴AD=2DH=2〔1+x〕, ∵∠DFG=∠DAF,∠FDG=∠FDG, ∴△DFG∽△DAF, ∴, ∴, ∴x=1, ∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°, ∴AF=∴⊙O的半径为. 考点:(1)、切线的性质;(2)、角平分线的性质;(3)、垂径定理. 24.在平面直角坐标系中,抛物线y=x2+bx+c的顶点M的坐标为〔﹣1,﹣4〕,且与x轴交于点A,点B〔点A在点B的左边〕,与y轴交于点C. 〔1〕填空:b=,c=,直线AC的解析式为; 〔2〕直线x=t与x轴相交于点H. ①当t=﹣3时得到直线AN〔如图1〕,点D为直线AC下方抛物线上一点,假设∠COD=∠MAN,求出此时点D的坐标; ②当﹣3<t<﹣1时〔如图2〕,直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值. 【答案】(1)、b=2,c=-3;y=-x-3;(2)、〔﹣,﹣2〕;- 【解析】 试题解析:(1)、∵抛物线y=x2+bx+c的顶点M的坐标为〔﹣1,﹣4〕, ∴,解得:, ∴抛物线解析式为:y=x2+2x﹣3, 令y=0,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3, ∴A〔﹣3,0〕,B〔1,0〕, 令x=0,得y=﹣3, ∴C〔0,﹣3〕, 设直线AC的解析式为:y=kx+b, 将A〔﹣3,0〕,C〔0,﹣3〕代入,得:,解得:, ∴直线AC的解析式为:y=﹣x﹣3; (2)、①设点D的坐标为〔m,m2+2m﹣3〕, ∵∠COD=∠MAN, ∴tan∠COD=tan∠MAN, ∴, 解得:m=±,∵﹣3<m<0, ∴m=﹣, 故点D的坐标为〔﹣,﹣2〕; 考点:二次函数综合题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 湖北省 孝感市 中考 数学试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文