江苏省苏州市2016年中考数学试题公开课.doc
《江苏省苏州市2016年中考数学试题公开课.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市2016年中考数学试题公开课.doc(22页珍藏版)》请在咨信网上搜索。
2016年江苏省苏州市中考数学试卷 参考答案与试题解析 一、选择题(共10小题,每小题3分,满分30分) 1.(2016·江苏苏州)的倒数是( ) A. B. C. D. 【考点】倒数. 【分析】直接根据倒数的定义进行解答即可. 【解答】解:∵×=1, ∴的倒数是. 故选A. 2.(2016·江苏苏州)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( ) A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.0007=7×10﹣4, 故选:C. 3.(2016·江苏苏州)下列运算结果正确的是( ) A.a+2b=3ab B.3a2﹣2a2=1 C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b 【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案. 【解答】解:A、a+2b,无法计算,故此选项错误; B、3a2﹣2a2=a2,故此选项错误; C、a2•a4=a6,故此选项错误; D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确; 故选:D. 4.(2016·江苏苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( ) A.0.1 B.0.2 C.0.3 D.0.4 【考点】频数与频率. 【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率. 【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4, 则第5组的频率为4÷40=0.1, 故选A. 5.(2016·江苏苏州)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为( ) A.58° B.42° C.32° D.28° 【考点】平行线的性质. 【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可. 【解答】解:∵直线a∥b, ∴∠ACB=∠2, ∵AC⊥BA, ∴∠BAC=90°, ∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°, 故选C. 6.(2016·江苏苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为( ) A.y1>y2B.y1<y2C.y1=y2D.无法确定 【考点】反比例函数图象上点的坐标特征. 【分析】直接利用反比例函数的增减性分析得出答案. 【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上, ∴每个象限内,y随x的增大而增大, ∴y1<y2, 故选:B. 7.(2016·江苏苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示: 用水量(吨) 15 20 25 30 35 户数 3 6 7 9 5 则这30户家庭该用用水量的众数和中位数分别是( ) A.25,27 B.25,25 C.30,27 D.30,25 【考点】众数;中位数. 【分析】根据众数、中位数的定义即可解决问题. 【解答】解:因为30出现了9次, 所以30是这组数据的众数, 将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25, 故选D. 8.(2016·江苏苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为( ) A.2m B.2m C.(2﹣2)m D.(2﹣2)m 【考点】解直角三角形的应用-坡度坡角问题. 【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可. 【解答】解:在Rt△ABD中,∵sin∠ABD=, ∴AD=4sin60°=2(m), 在Rt△ACD中,∵sin∠ACD=, ∴AC==2(m). 故选B. 9.(2016·江苏苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( ) A.(3,1) B.(3,) C.(3,) D.(3,2) 【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题. 【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题. 【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小. ∵D(,0),A(3,0), ∴H(,0), ∴直线CH解析式为y=﹣x+4, ∴x=3时,y=, ∴点E坐标(3,) 故选:B. 10.(2016·江苏苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为( ) A.2 B. C. D.3 【考点】三角形的面积. 【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果. 【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H, ∵∠ABC=90°,AB=BC=2, ∴AC===4, ∵△ABC为等腰三角形,BH⊥AC, ∴△ABG,△BCG为等腰直角三角形, ∴AG=BG=2 ∵S△ABC=•AB•AC=×2×2=4, ∴S△ADC=2, ∵=2, ∴GH=BG=, ∴BH=, 又∵EF=AC=2, ∴S△BEF=•EF•BH=×2×=, 故选C. 二、填空题(共8小题,每小题3分,满分24分) 11.(2016·江苏苏州)分解因式:x2﹣1= (x+1)(x﹣1) . 【考点】因式分解-运用公式法. 【分析】利用平方差公式分解即可求得答案. 【解答】解:x2﹣1=(x+1)(x﹣1). 故答案为:(x+1)(x﹣1). 12.(2016·江苏苏州)当x= 2 时,分式的值为0. 【考点】分式的值为零的条件. 【分析】直接利用分式的值为0,则分子为0,进而求出答案. 【解答】解:∵分式的值为0, ∴x﹣2=0, 解得:x=2. 故答案为:2. 13.(2016·江苏苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是 乙 运动员.(填“甲”或“乙”) 【考点】方差. 【分析】根据方差的定义,方差越小数据越稳定. 【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙, 所以本题中成绩比较稳定的是乙. 故答案为乙. 14.(2016·江苏苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 72 度. 【考点】条形统计图;扇形统计图. 【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案. 【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%, 则本次调查中,一共调查了:90÷30%=300(人), 则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°; 故答案为:72. 15.(2016·江苏苏州)不等式组的最大整数解是 3 . 【考点】一元一次不等式组的整数解. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可. 【解答】解:解不等式x+2>1,得:x>﹣1, 解不等式2x﹣1≤8﹣x,得:x≤3, 则不等式组的解集为:﹣1<x≤3, 则不等式组的最大整数解为3, 故答案为:3. 16.(2016·江苏苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为 . 【考点】切线的性质;圆周角定理;扇形面积的计算. 【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积. 【解答】解:连接OC, ∵过点C的切线交AB的延长线于点D, ∴OC⊥CD, ∴∠OCD=90°, 即∠D+∠COD=90°, ∵AO=CO, ∴∠A=∠ACO, ∴∠COD=2∠A, ∵∠A=∠D, ∴∠COD=2∠D, ∴3∠D=90°, ∴∠D=30°, ∴∠COD=60° ∵CD=3, ∴OC=3×=, ∴阴影部分的面积=×3×﹣=, 故答案为:. 17.(2016·江苏苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为 2 . 【考点】翻折变换(折叠问题). 【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可. 【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G, ∵∠B=60°,BE=BD=4, ∴△BDE是边长为4的等边三角形, ∵将△BDE沿DE所在直线折叠得到△B′DE, ∴△B′DE也是边长为4的等边三角形, ∴GD=B′F=2, ∵B′D=4, ∴B′G===2, ∵AB=10, ∴AG=10﹣6=4, ∴AB′===2. 故答案为:2. 18.(2016·江苏苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为 (1,) . 【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质. 【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标. 【解答】解:∵点A、B的坐标分别为(8,0),(0,2) ∴BO=,AO=8 由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4 设DP=a,则CP=4﹣a 当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP 又∵EP⊥CP,PD⊥BD ∴∠EPC=∠PDB=90° ∴△EPC∽△PDB ∴,即 解得a1=1,a2=3(舍去) ∴DP=1 又∵PE= ∴P(1,) 故答案为:(1,) 三、解答题(共10小题,满分76分) 19.(2016·江苏苏州)计算:()2+|﹣3|﹣(π+)0. 【考点】实数的运算;零指数幂. 【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案. 【解答】解:原式=5+3﹣1 =7. 20.(2016·江苏苏州)解不等式2x﹣1>,并把它的解集在数轴上表示出来. 【考点】解一元一次不等式;在数轴上表示不等式的解集. 【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 【解答】解:去分母,得:4x﹣2>3x﹣1, 移项,得:4x﹣3x>2﹣1, 合并同类项,得:x>1, 将不等式解集表示在数轴上如图: 21.(2016·江苏苏州)先化简,再求值:÷(1﹣),其中x=. 【考点】分式的化简求值. 【分析】先括号内通分,然后计算除法,最后代入化简即可. 【解答】解:原式=÷ =• =, 当x=时,原式==. 22.(2016·江苏苏州)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆? 【考点】二元一次方程组的应用. 【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解. 【解答】解:设中型车有x辆,小型车有y辆,根据题意,得 解得 答:中型车有20辆,小型车有30辆. 23.(2016·江苏苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同. (1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ; (2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率. 【考点】列表法与树状图法;坐标与图形性质;概率公式. 【分析】(1)直接利用概率公式求解; (2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解. 【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=; 故答案为; (2)画树状图为: 共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6, 所以点M落在如图所示的正方形网格内(包括边界)的概率==. 24.(2016·江苏苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E. (1)证明:四边形ACDE是平行四边形; (2)若AC=8,BD=6,求△ADE的周长. 【考点】菱形的性质;平行四边形的判定与性质. 【分析】(1)根据平行四边形的判定证明即可; (2)利用平行四边形的性质得出平行四边形的周长即可. 【解答】(1)证明:∵四边形ABCD是菱形, ∴AB∥CD,AC⊥BD, ∴AE∥CD,∠AOB=90°, ∵DE⊥BD,即∠EDB=90°, ∴∠AOB=∠EDB, ∴DE∥AC, ∴四边形ACDE是平行四边形; (2)解:∵四边形ABCD是菱形,AC=8,BD=6, ∴AO=4,DO=3,AD=CD=5, ∵四边形ACDE是平行四边形, ∴AE=CD=5,DE=AC=8, ∴△ADE的周长为AD+AE+DE=5+5+8=18. 25.(2016·江苏苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式. 【考点】反比例函数与一次函数的交点问题. 【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式. 【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上, ∴. 解得:m=8,n=4. ∴反比例函数的表达式为y=. ∵m=8,n=4, ∴点B(2,4),(8,1). 过点P作PD⊥BC,垂足为D,并延长交AB与点P′. 在△BDP和△BDP′中, ∴△BDP≌△BDP′. ∴DP′=DP=6. ∴点P′(﹣4,1). 将点P′(﹣4,1),B(2,4)代入直线的解析式得:, 解得:. ∴一次函数的表达式为y=x+3. 26.(2016·江苏苏州)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF. (1)证明:∠E=∠C; (2)若∠E=55°,求∠BDF的度数; (3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值. 【考点】圆的综合题. 【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C; (2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案; (3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可. 【解答】(1)证明:连接AD, ∵AB是⊙O的直径, ∴∠ADB=90°,即AD⊥BC, ∵CD=BD, ∴AD垂直平分BC, ∴AB=AC, ∴∠B=∠C, 又∵∠B=∠E, ∴∠E=∠C; (2)解:∵四边形AEDF是⊙O的内接四边形, ∴∠AFD=180°﹣∠E, 又∵∠CFD=180°﹣∠AFD, ∴∠CFD=∠E=55°, 又∵∠E=∠C=55°, ∴∠BDF=∠C+∠CFD=110°; (3)解:连接OE, ∵∠CFD=∠E=∠C, ∴FD=CD=BD=4, 在Rt△ABD中,cosB=,BD=4, ∴AB=6, ∵E是的中点,AB是⊙O的直径, ∴∠AOE=90°, ∵AO=OE=3, ∴AE=3, ∵E是的中点, ∴∠ADE=∠EAB, ∴△AEG∽△DEA, ∴=, 即EG•ED=AE2=18. 27.(2016·江苏苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<). (1)如图1,连接DQ平分∠BDC时,t的值为 ; (2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值; (3)请你继续进行探究,并解答下列问题: ①证明:在运动过程中,点O始终在QM所在直线的左侧; ②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由. 【考点】圆的综合题. 【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题. (2)由△QTM∽△BCD,得=列出方程即可解决. (3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题. ②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切. 【解答】(1)解:如图1中,∵四边形ABCD是矩形, ∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8, ∴BD===10, ∵PQ⊥BD, ∴∠BPQ=90°=∠C, ∵∠PBQ=∠DBC, ∴△PBQ∽△CBD, ∴==, ∴==, ∴PQ=3t,BQ=5t, ∵DQ平分∠BDC,QP⊥DB,QC⊥DC, ∴QP=QC, ∴3t=6﹣5t, ∴t=, 故答案为. (2)解:如图2中,作MT⊥BC于T. ∵MC=MQ,MT⊥CQ, ∴TC=TQ, 由(1)可知TQ=(8﹣5t),QM=3t, ∵MQ∥BD, ∴∠MQT=∠DBC, ∵∠MTQ=∠BCD=90°, ∴△QTM∽△BCD, ∴=, ∴=, ∴t=(s), ∴t=s时,△CMQ是以CQ为底的等腰三角形. (3)①证明:如图2中,由此QM交CD于E, ∵EQ∥BD, ∴=, ∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t, ∵DO=3t, ∴DE﹣DO=t﹣3t=t>0, ∴点O在直线QM左侧. ②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E. ∵EC=(8﹣5t),DO=3t, ∴OE=6﹣3t﹣(8﹣5t)=t, ∵OH⊥MQ, ∴∠OHE=90°, ∵∠HEO=∠CEQ, ∴∠HOE=∠CQE=∠CBD, ∵∠OHE=∠C=90°, ∴△OHE∽△BCD, ∴=, ∴=, ∴t=. ∴t=s时,⊙O与直线QM相切. 连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°, 在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°, ∴∠OFH=∠FOH=45°, ∴OH=FH=0.8,FO=FM=0.8, ∴MH=0.8(+1), 由=得到HE=, 由=得到EQ=, ∴MH=MQ﹣HE﹣EQ=4﹣﹣=, ∴0.8(+1)≠,矛盾, ∴假设不成立. ∴直线MQ与⊙O不相切. 28.(2016·江苏苏州)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B. (1)求该抛物线的函数表达式; (2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′. ①写出点M′的坐标; ②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数). 【考点】二次函数综合题. 【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值; (2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3; (3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值; ②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值. 【解答】解:(1)令x=0代入y=﹣3x+3, ∴y=3, ∴B(0,3), 把B(0,3)代入y=ax2﹣2ax+a+4, ∴3=a+4, ∴a=﹣1, ∴二次函数解析式为:y=﹣x2+2x+3; (2)令y=0代入y=﹣x2+2x+3, ∴0=﹣x2+2x+3, ∴x=﹣1或3, ∴抛物线与x轴的交点横坐标为﹣1和3, ∵M在抛物线上,且在第一象限内, ∴0<m<3, 过点M作ME⊥y轴于点E,交AB于点D, 由题意知:M的坐标为(m,﹣m2+2m+3), ∴D的纵坐标为:﹣m2+2m+3, ∴把y=﹣m2+2m+3代入y=﹣3x+3, ∴x=, ∴D的坐标为(,﹣m2+2m+3), ∴DM=m﹣=, ∴S=DM•BE+DM•OE =DM(BE+OE) =DM•OB =××3 = =(m﹣)2+ ∵0<m<3, ∴当m=时, S有最大值,最大值为; (3)①由(2)可知:M′的坐标为(,); ②过点M′作直线l1∥l′,过点B作BF⊥l1于点F, 根据题意知:d1+d2=BF, 此时只要求出BF的最大值即可, ∵∠BFM′=90°, ∴点F在以BM′为直径的圆上, 设直线AM′与该圆相交于点H, ∵点C在线段BM′上, ∴F在优弧上, ∴当F与M′重合时, BF可取得最大值, 此时BM′⊥l1, ∵A(1,0),B(0,3),M′(,), ∴由勾股定理可求得:AB=,M′B=,M′A=, 过点M′作M′G⊥AB于点G, 设BG=x, ∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2, ∴﹣(﹣x)2=﹣x2, ∴x=, cos∠M′BG==, ∵l1∥l′, ∴∠BCA=90°, ∠BAC=45° 第22页(共22页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 苏州市 2016 年中 数学试题 公开
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文