2022年湖南省永州市中考数学试卷解析.docx
《2022年湖南省永州市中考数学试卷解析.docx》由会员分享,可在线阅读,更多相关《2022年湖南省永州市中考数学试卷解析.docx(41页珍藏版)》请在咨信网上搜索。
2022年湖南省永州市中考数学试卷 一、选择题,共10小题,每题3分,共30分 1.〔3分〕〔2022•永州〕在数轴上表示数﹣1和2022的两点分别为A和B,那么A和B两点间的距离为〔 〕 A. 2022 B. 2022 C. 2022 D. 2022 2.〔3分〕〔2022•永州〕以下运算正确的选项是〔 〕 A. a2•a3=a6 B. 〔﹣a+b〕〔a+b〕=b2﹣a2 C. 〔a3〕4=a7 D. a3+a5=a8 3.〔3分〕〔2022•永州〕某中学九年级舞蹈兴趣小组8名学生的身高分别为〔单位:cm〕:168,165,168,166,170,170,176,170,那么以下说法错误的选项是〔 〕 A. 这组数据的众数是170 B. 这组数据的中位数是169 C. 这组数据的平均数是169 D. 假设从8名学生中任选1名学生参加校文艺会演,那么这名学生的身高不低于170的概率为 4.〔3分〕〔2022•永州〕永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红〞.今年“五一〞期间举办了“阳明山杜鹃花旅游文化节〞,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,阳明上景区游客的饱和人数约为2000人,那么据此可知开幕式当天该景区游客人数饱和的时间约为〔 〕 A. 10:00 B. 12:00 C. 13:00 D. 16:00 5.〔3分〕〔2022•永州〕一张桌子上摆放有假设干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如下列图,那么这张桌子上碟子的总数为〔 〕 A. 11 B. 12 C. 13 D. 14 6.〔3分〕〔2022•永州〕如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,和所对的圆心角分别为90°和50°,那么∠P=〔 〕 A. 45° B. 40° C. 25° D. 20° 7.〔3分〕〔2022•永州〕假设不等式组恰有两个整数解,那么m的取值范围是〔 〕 A. ﹣1≤m<0 B. ﹣1<m≤0 C. ﹣1≤m≤0 D. ﹣1<m<0 8.〔3分〕〔2022•永州〕如图,以下条件不能判定△ADB∽△ABC的是〔 〕 A. ∠ABD=∠ACB B. ∠ADB=∠ABC C. AB2=AD•AC D. = 9.〔3分〕〔2022•永州〕如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,假设点P使得S△PAB=S△PCD,那么满足此条件的点P〔 〕 A. 有且只有1个 B. 有且只有2个 C. 组成∠E的角平分线 D. 组成∠E的角平分线所在的直线〔E点除外〕 10.〔3分〕〔2022•永州〕定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,以下式子中错误的选项是〔 〕 A. [x]=x〔x为整数〕 B. 0≤x﹣[x]<1 C. [x+y]≤[x]+[y] D. [n+x]=n+[x]〔n为整数〕 二、填空题,共8小题,每题3分,共24分 11.〔3分〕〔2022•永州〕国家森林城市的创立极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2022年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市〞乘号.永州市也在积极创立“国家森林城市〞.据统计近两年全市投入“创森〞资金约为365000000元,365000000用科学记数法表示为. 12.〔3分〕〔2022•永州〕如图,∠1=∠2,∠A=60°,那么∠ADC=度. 13.〔3分〕〔2022•永州〕一次函数y=kx+b的图象经过两点A〔0,1〕,B〔2,0〕,那么当x时,y≤0. 14.〔3分〕〔2022•永州〕点A〔﹣1,y1〕,B〔1,y2〕和C〔2,y3〕都在反比例函数y=〔k>0〕的图象上.那么<<〔填y1,y2,y3〕. 15.〔3分〕〔2022•永州〕如图,在△ABC中,∠1=∠2,BE=CD,AB=5,AE=2,那么CE=. 16.〔3分〕〔2022•永州〕如图,在平面直角坐标系中,点A的坐标〔﹣2,0〕,△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为. 17.〔3分〕〔2022•永州〕在等腰△ABC中,AB=AC,那么有BC边上的中线,高线和∠BAC的平分线重合于AD〔如图一〕.假设将等腰△ABC的顶点A向右平行移动后,得到△A′BC〔如图二〕,那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是,,.〔填A′D、A′E、A′F〕 18.〔3分〕〔2022•永州〕设an为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.那么a1+a2+a3+…+a2022+a2022+a2022=. 三、简单题,共9小题,共76分 19.〔6分〕〔2022•永州〕计算:cos30°﹣+〔〕﹣2. 20.〔6分〕〔2022•永州〕先化简,再求值:•〔m﹣n〕,其中=2. 21.〔8分〕〔2022•永州〕中央电视台举办的“中国汉字听写大会〞节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会〞节目的喜爱程度,对该校局部学生进行了随机抽样调查,并绘制出如下列图的两幅统计图.在条形图中,从左向右依次为A类〔非常喜欢〕,B类〔较喜欢〕,C类〔一般〕,D类〔不喜欢〕.A类和B类所占人数的比是5:9,请结合两幅统计图,答复以下问题: 〔1〕写出本次抽样调查的样本容量; 〔2〕请补全两幅统计图; 〔3〕假设该校有2000名学生.请你估计观看“中国汉字听写大会〞节目不喜欢的学生人数. 22.〔8分〕〔2022•永州〕关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根. 23.〔8分〕〔2022•永州〕如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB. 〔1〕求证:∠ABC=∠EDC; 〔2〕求证:△ABC≌△EDC. 24.〔10分〕〔2022•永州〕如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.假设一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. 〔1〕求对学校A的噪声影响最大时卡车P与学校A的距离; 〔2〕求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 25.〔10分〕〔2022•永州〕如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD. 〔1〕求证:BE=CE; 〔2〕试判断四边形BFCD的形状,并说明理由; 〔3〕假设BC=8,AD=10,求CD的长. 26.〔10分〕〔2022•永州〕抛物线y=ax2+bx+c的顶点为〔1,0〕,与y轴的交点坐标为〔0,〕.R〔1,1〕是抛物线对称轴l上的一点. 〔1〕求抛物线y=ax2+bx+c的解析式; 〔2〕假设P是抛物线上的一个动点〔如图一〕,求证:点P到R的距离与点P到直线y=﹣1的距离恒相等; 〔3〕设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N〔如图二〕.求证:PF⊥QF. 27.〔10分〕〔2022•永州〕问题探究: 〔一〕新知学习: 圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆〔即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上〕. 〔二〕问题解决: ⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M. 〔1〕假设直径AB⊥CD,对于上任意一点P〔不与B、C重合〕〔如图一〕,证明四边形PMON内接于圆,并求此圆直径的长; 〔2〕假设直径AB⊥CD,在点P〔不与B、C重合〕从B运动到C的过程汇总,证明MN的长为定值,并求其定值; 〔3〕假设直径AB与CD相交成120°角. ①当点P运动到的中点P1时〔如图二〕,求MN的长; ②当点P〔不与B、C重合〕从B运动到C的过程中〔如图三〕,证明MN的长为定值. 〔4〕试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值. 2022年湖南省永州市中考数学试卷 参考答案与试题解析 一、选择题,共10小题,每题3分,共30分 1.〔3分〕〔2022•永州〕在数轴上表示数﹣1和2022的两点分别为A和B,那么A和B两点间的距离为〔 〕 A. 2022 B. 2022 C. 2022 D. 2022 考点: 数轴.菁优网版权所有 分析: 数轴上两点间的距离等于表示这两点的数的差的绝对值. 解答: 解:|﹣1﹣2022|=2022,故A,B两点间的距离为2022,应选:C. 点评: 此题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数〞和“形〞结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 2.〔3分〕〔2022•永州〕以下运算正确的选项是〔 〕 A. a2•a3=a6 B. 〔﹣a+b〕〔a+b〕=b2﹣a2 C. 〔a3〕4=a7 D. a3+a5=a8 考点: 平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.菁优网版权所有 分析: A:根据同底数幂的乘法法那么判断即可. B:平方差公式:〔a+b〕〔a﹣b〕=a2﹣b2,据此判断即可. C:根据幂的乘方的计算方法判断即可. D:根据合并同类项的方法判断即可. 解答: 解:∵a2•a3=a5, ∴选项A不正确; ∵〔﹣a+b〕〔a+b〕=b2﹣a2, ∴选项B正确; ∵〔a3〕4=a12, ∴选项C不正确; ∵a3+a5≠a8 ∴选项D不正确. 应选:B. 点评: 〔1〕此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法那么简便. 〔2〕此题还考查了同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. 〔3〕此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①〔am〕n=amn〔m,n是正整数〕;②〔ab〕n=anbn〔n是正整数〕. 〔4〕此题还考查了合并同类项的方法,要熟练掌握. 3.〔3分〕〔2022•永州〕某中学九年级舞蹈兴趣小组8名学生的身高分别为〔单位:cm〕:168,165,168,166,170,170,176,170,那么以下说法错误的选项是〔 〕 A. 这组数据的众数是170 B. 这组数据的中位数是169 C. 这组数据的平均数是169 D. 假设从8名学生中任选1名学生参加校文艺会演,那么这名学生的身高不低于170的概率为 考点: 众数;加权平均数;中位数;概率公式.菁优网版权所有 分析: 分别利用众数、中位数、平均数及概率的知识求解后即可判断正误; 解答: 解:A、数据170出现了3次,最多,故众数为170,正确,不符合题意; B、排序后位于中间位置的两数为168和170,故中位数为169,正确,不符合题意; C、平均数为〔168+165+168+166+170+170+176+170〕÷4=169.125,故错误,符合题意; D、从8名学生中任选1名学生参加校文艺会演,那么这名学生的身高不低于170的概率为=, 应选C. 点评: 此题考查了众数、加权平均数、中位数及概率公式,解题的关键是能够分别求得有关统计量,难度不大. 4.〔3分〕〔2022•永州〕永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红〞.今年“五一〞期间举办了“阳明山杜鹃花旅游文化节〞,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,阳明上景区游客的饱和人数约为2000人,那么据此可知开幕式当天该景区游客人数饱和的时间约为〔 〕 A. 10:00 B. 12:00 C. 13:00 D. 16:00 考点: 一元一次方程的应用.菁优网版权所有 分析: 设开幕式当天该景区游客人数饱和的时间约为x点,结合条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,阳明上景区游客的饱和人数约为2000人〞列出方程并解答. 解答: 解:设开幕式当天该景区游客人数饱和的时间约为x点,那么 〔x﹣8〕×〔1000﹣600〕=2000, 解得x=13. 即开幕式当天该景区游客人数饱和的时间约为13:00. 应选:C. 点评: 此题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解. 5.〔3分〕〔2022•永州〕一张桌子上摆放有假设干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如下列图,那么这张桌子上碟子的总数为〔 〕 A. 11 B. 12 C. 13 D. 14 考点: 由三视图判断几何体.菁优网版权所有 分析: 从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案. 解答: 解:由俯视图可得:碟子共有3摞, 由几何体的主视图和左视图,可得每摞碟子的个数,如以下列图所示: 故这张桌子上碟子的个数为3+4+5=12个, 应选:B. 点评: 此题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键. 6.〔3分〕〔2022•永州〕如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,和所对的圆心角分别为90°和50°,那么∠P=〔 〕 A. 45° B. 40° C. 25° D. 20° 考点: 圆周角定理.菁优网版权所有 分析: 先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数. 解答: 解:∵和所对的圆心角分别为90°和50°, ∴∠A=25°,∠ADB=45°, ∵∠P+∠A=∠ADB, ∴∠P=∠ADB﹣∠P=45°﹣25°=20°. 应选D. 点评: 此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题. 7.〔3分〕〔2022•永州〕假设不等式组恰有两个整数解,那么m的取值范围是〔 〕 A. ﹣1≤m<0 B. ﹣1<m≤0 C. ﹣1≤m≤0 D. ﹣1<m<0 考点: 一元一次不等式组的整数解.菁优网版权所有 分析: 先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可. 解答: 解:∵不等式组的解集为m﹣1<x<1, 又∵不等式组恰有两个整数解, ∴﹣2≤m﹣1<﹣1, 解得:﹣1≤m<0 恰有两个整数解, 应选A. 点评: 此题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中. 8.〔3分〕〔2022•永州〕如图,以下条件不能判定△ADB∽△ABC的是〔 〕 A. ∠ABD=∠ACB B. ∠ADB=∠ABC C. AB2=AD•AC D. = 考点: 相似三角形的判定.菁优网版权所有 分析: 根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可. 解答: 解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意; D、=不能判定△ADB∽△ABC,故此选项符合题意. 应选:D. 点评: 此题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似. 9.〔3分〕〔2022•永州〕如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,假设点P使得S△PAB=S△PCD,那么满足此条件的点P〔 〕 A. 有且只有1个 B. 有且只有2个 C. 组成∠E的角平分线 D. 组成∠E的角平分线所在的直线〔E点除外〕 考点: 角平分线的性质.菁优网版权所有 分析: 根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD. 解答: 解:作∠E的平分线, 可得点P到AB和CD的距离相等, 因为AB=CD, 所以此时点P满足S△PAB=S△PCD. 应选D. 点评: 此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可. 10.〔3分〕〔2022•永州〕定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,以下式子中错误的选项是〔 〕 A. [x]=x〔x为整数〕 B. 0≤x﹣[x]<1 C. [x+y]≤[x]+[y] D. [n+x]=n+[x]〔n为整数〕 考点: 一元一次不等式组的应用.菁优网版权所有 专题: 新定义. 分析: 根据“定义[x]为不超过x的最大整数〞进行计算. 解答: 解:A、∵[x]为不超过x的最大整数, ∴当x是整数时,[x]=x,成立; B、∵[x]为不超过x的最大整数, ∴0≤x﹣[x]<1,成立; C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+〔﹣4〕=﹣10, ∵﹣9>﹣10, ∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2], ∴[x+y]≤[x]+[y]不成立, D、[n+x]=n+[x]〔n为整数〕,成立; 应选:C. 点评: 此题考查了一元一次不等式组的应用,解决此题的关键是理解新定义.新定义解题是近几年高考常考的题型. 二、填空题,共8小题,每题3分,共24分 11.〔3分〕〔2022•永州〕国家森林城市的创立极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2022年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市〞乘号.永州市也在积极创立“国家森林城市〞.据统计近两年全市投入“创森〞资金约为365000000元,365000000用科学记数法表示为 3.65×108. 考点: 科学记数法—表示较大的数.菁优网版权所有 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:将365000000用科学记数法表示为3.65×108. 故答案为:3.65×108. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 12.〔3分〕〔2022•永州〕如图,∠1=∠2,∠A=60°,那么∠ADC= 120 度. 考点: 平行线的判定与性质.菁优网版权所有 分析: 由一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数. 解答: 解:∵∠1=∠2, ∴AB∥CD, ∴∠A+∠ADC=180°, ∵∠A=60°, ∴∠ADC=120°. 故答案为:120° 点评: 此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解此题的关键. 13.〔3分〕〔2022•永州〕一次函数y=kx+b的图象经过两点A〔0,1〕,B〔2,0〕,那么当x ≥2 时,y≤0. 考点: 待定系数法求一次函数解析式;一次函数的性质.菁优网版权所有 分析: 利用待定系数法把点A〔0,﹣1〕,B〔1,0〕代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可. 解答: 解:∵一次函数y=kx+b的图象经过两点A〔0,1〕,B〔2,0〕, ∴, 解得: 这个一次函数的表达式为y=﹣x+1. 解不等式﹣x+1≤0, 解得x≥2. 故答案为x≥2. 点评: 此题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键. 14.〔3分〕〔2022•永州〕点A〔﹣1,y1〕,B〔1,y2〕和C〔2,y3〕都在反比例函数y=〔k>0〕的图象上.那么 y1< y3< y2〔填y1,y2,y3〕. 考点: 反比例函数图象上点的坐标特征.菁优网版权所有 分析: 先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论. 解答: 解:∵反比例函数y=〔k>0〕中k>0, ∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小. ∵﹣1<0,﹣1<0, ∴点A〔﹣1,y1〕位于第三象限, ∴y1<0, ∴B〔1,y2〕和C〔2,y3〕位于第一象限, ∴y2>0,y3>0, ∵1<2, ∴y2>y3, ∴y1<y3<y2. 故答案为:y1,y3,y2. 点评: 此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 15.〔3分〕〔2022•永州〕如图,在△ABC中,∠1=∠2,BE=CD,AB=5,AE=2,那么CE= 3 . 考点: 全等三角形的判定与性质.菁优网版权所有 分析: 由条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论. 解答: 解:△ABE和△ACD中, , ∴△ABE≌△ACD〔AAS〕, ∴AD=AE=2,AC=AB=5, ∴CE=BD=AB﹣AD=3, 故答案为3. 点评: 此题主要考查了全等三角形的性质和判定,熟记定理是解题的关键. 16.〔3分〕〔2022•永州〕如图,在平面直角坐标系中,点A的坐标〔﹣2,0〕,△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为π . 考点: 扇形面积的计算;坐标与图形性质;旋转的性质.菁优网版权所有 分析: 根据点A的坐标〔﹣2,0〕,可得OA=2,再根据含30°的直角三角形的性质可得OB的长,再根据性质的性质和扇形的面积公式即可求解. 解答: 解:∵点A的坐标〔﹣2,0〕, ∴OA=2, ∵△ABO是直角三角形,∠AOB=60°, ∴∠OAB=30°, ∴OB=OA=1, ∴边OB扫过的面积为:=π. 故答案为:π. 点评: 此题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径〕,或S=lR,l为扇形的弧长,R为半径. 17.〔3分〕〔2022•永州〕在等腰△ABC中,AB=AC,那么有BC边上的中线,高线和∠BAC的平分线重合于AD〔如图一〕.假设将等腰△ABC的顶点A向右平行移动后,得到△A′BC〔如图二〕,那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是 A′D , AF , AE .〔填A′D、A′E、A′F〕 考点: 平移的性质;等腰三角形的性质.菁优网版权所有 分析: 根据三角形中线的定义,可得答案,根据三角形角平分线的定义,可得答案,三角形高线的定义,可得答案. 解答: 解:, 在等腰△ABC中,AB=AC,那么有BC边上的中线,高线和∠BAC的平分线重合于AD〔如图一〕.假设将等腰△ABC的顶点A向右平行移动后,得到△A′BC〔如图二〕,那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是 A′D,AF,AE, 故答案为:A′D,A′F,A′E. 点评: 此题考查了平移的性质,平移不改变三角形的中线,三角形的角平分线分角相等,三角形的高线垂直于角的对边. 18.〔3分〕〔2022•永州〕设an为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.那么a1+a2+a3+…+a2022+a2022+a2022= 6652 . 考点: 尾数特征.菁优网版权所有 分析: 正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2022÷10的商和余数,再根据商和余数,即可求解. 解答: 解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环, 1+6+1+6+5+6+1+6+1+0=33, 2022÷10=201…5, 33×201+〔1+6+1+6+5〕 =6633+19 =6652. 故a1+a2+a3+…+a2022+a2022+a2022=6652. 故答案为:6652. 点评: 考查了尾数特征,此题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环. 三、简单题,共9小题,共76分 19.〔6分〕〔2022•永州〕计算:cos30°﹣+〔〕﹣2. 考点: 实数的运算;负整数指数幂;特殊角的三角函数值.菁优网版权所有 专题: 计算题. 分析: 原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,最后一项利用负整数指数幂法那么计算即可得到结果. 解答: 解:原式=﹣+4=4. 点评: 此题考查了实数的运算,熟练掌握运算法那么是解此题的关键. 20.〔6分〕〔2022•永州〕先化简,再求值:•〔m﹣n〕,其中=2. 考点: 分式的化简求值.菁优网版权所有 分析: 先根据分式混合运算的法那么把原式进行化简,再由=2得出m=2n,代入原式进行计算即可. 解答: 解:原式=•〔m﹣n〕 =, 由=2得m=2n, 故原式===5. 点评: 此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键. 21.〔8分〕〔2022•永州〕中央电视台举办的“中国汉字听写大会〞节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会〞节目的喜爱程度,对该校局部学生进行了随机抽样调查,并绘制出如下列图的两幅统计图.在条形图中,从左向右依次为A类〔非常喜欢〕,B类〔较喜欢〕,C类〔一般〕,D类〔不喜欢〕.A类和B类所占人数的比是5:9,请结合两幅统计图,答复以下问题: 〔1〕写出本次抽样调查的样本容量; 〔2〕请补全两幅统计图; 〔3〕假设该校有2000名学生.请你估计观看“中国汉字听写大会〞节目不喜欢的学生人数. 考点: 条形统计图;用样本估计总体;扇形统计图.菁优网版权所有 分析: 〔1〕用A类的人数除以它所占的百分比,即可得样本容量; 〔2〕分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26〔人〕,D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图; 〔3〕用2000乘以26%,即可解答. 解答: 解:〔1〕20÷20%=100, ∴本次抽样调查的样本容量为100. 〔2〕D类的人数为:100﹣20﹣35﹣100×19%=26〔人〕, D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%, 如下列图: 〔3〕2000×26%=520〔人〕. 故假设该校有2000名学生.估计观看“中国汉字听写大会〞节目不喜欢的学生人数为520人. 点评: 此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小. 22.〔8分〕〔2022•永州〕关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根. 考点: 一元二次方程的解;根与系数的关系.菁优网版权所有 分析: 把x=﹣1代入方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根. 解答: 解:设方程的另一根为x2,那么 ﹣1+x2=﹣1, 解得x2=0. 把x=﹣1代入x2+x+m2﹣2m=0,得 〔﹣1〕2+〔﹣1〕+m2﹣2m=0,即m〔m﹣2〕=0, 解得m1=0,m2=2. 综上所述,m的值是0或2,方程的另一实根是0. 点评: 此题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立. 23.〔8分〕〔2022•永州〕如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB. 〔1〕求证:∠ABC=∠EDC; 〔2〕求证:△ABC≌△EDC. 考点: 全等三角形的判定与性质.菁优网版权所有 专题: 证明题. 分析: 〔1〕根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE; 〔2〕根据“边角边〞证明即可. 解答: 〔1〕证明:在四边形ABCD中,∵∠BAD=∠BCD=90°, ∴90°+∠B+90°+∠ADC=360°, ∴∠B+∠ADC=180°, 又∵∠CDE+∠ADE=180°, ∴∠ABC=∠CDE, 〔2〕连接AC,由〔1〕证得∠ABC=∠CDE, 在△ABC和△EDC中, , ∴△ABC≌△EDC〔SAS〕. 点评: 此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是此题的难点. 24.〔10分〕〔2022•永州〕如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.假设一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. 〔1〕求对学校A的噪声影响最大时卡车P与学校A的距离; 〔2〕求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 考点: 勾股定理的应用;垂径定理的应用.菁优网版权所有 分析: 〔1〕直接利用直角三角形中30°所对的边等于斜边的一半求出即可; 〔2〕根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可. 解答: 解:〔1〕过点A作AD⊥ON于点D, ∵∠NOM=30°,AO=80m, ∴AD=40m, 即对学校A的噪声影响最大时卡车P与学校A的距离为40米; 〔2〕由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m, ∵在Rt△AOD中,∠AOB=30°, ∴AD=OA=×80=40m, 在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m, 故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响. ∵重型运输卡车的速度为18千米/小时,即=300米/分钟, ∴重型运输卡车经过BD时需要60÷300=0.2〔分钟〕=12〔秒〕. 答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒. 点评: 此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响. 25.〔10分〕〔2022•永州〕如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD. 〔1〕求证:BE=CE; 〔2〕试判断四边形BFCD的形状,并说明理由; 〔3〕假设BC=8,AD=10,求CD的长. 考点: 垂径定理;勾股定理;菱形的判定.菁优网版权所有 分析: 〔1〕证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明; 〔2〕菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论; 〔3〕设DE=x,那么根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD. 解答: 〔1〕证明:∵AD是直径, ∴∠ABD=∠ACD=90°, 在Rt△ABD和Rt△ACD中, , ∴Rt△ABD≌Rt△ACD, ∴∠BAD=∠CAD, ∵AB=AC, ∴BE=CE; 〔2〕四边形BFCD是菱形. 证明:∵AD是直径,AB=AC, ∴AD⊥BC,BE=CE, ∵CF∥BD, ∴∠FCE=∠DBE, 在△BED和△CEF中 , ∴△BED≌△CEF, ∴CF=BD, ∴四边形BFCD是平行四边形, ∵∠BAD=∠CAD, ∴BD=CD, ∴四边形BFCD是菱形; 〔3〕解:∵AD是直径,AD⊥BC,BE=CE, ∴CE2=DE•AE, 设DE=x, ∵BC=8,AD=10, ∴42=x〔10﹣x〕, 解得:x=2或x=8〔舍去〕 在Rt△CED中, CD===2. 点评: 此题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键. 26.〔10分〕〔2022•永州〕抛物线y=ax2+bx+c的顶点为〔1,0〕,与y轴的交点坐标为〔0,〕.R〔1,1〕是抛物线对称轴l上的一点. 〔1〕求抛物线y=ax2+bx+c的解析式; 〔2〕假设P是抛物线上的一个动点〔如图一〕,求证:点P到R的距离与点P到直线y=﹣1的距离恒相等; 〔3〕设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N〔如图二〕.求证:PF⊥QF- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 湖南省 永州市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文