2023版高考数学一轮复习第四章三角函数解三角形4.2三角函数的同角关系诱导公式练习理北师大版.doc
《2023版高考数学一轮复习第四章三角函数解三角形4.2三角函数的同角关系诱导公式练习理北师大版.doc》由会员分享,可在线阅读,更多相关《2023版高考数学一轮复习第四章三角函数解三角形4.2三角函数的同角关系诱导公式练习理北师大版.doc(8页珍藏版)》请在咨信网上搜索。
4.2 三角函数的同角关系、诱导公式 核心考点·精准研析 考点一 同角三角函数的根本关系式的应用 1.(2023·西安模拟)假设sin α=-,且α为第四象限角,那么tan α= ( ) A. B.- C. D.- 【解析】选D.因为sin α=-,α为第四象限角, 所以cos α==,所以tan α==-. 2.cos α=k,k∈R,α∈,那么sin α= ( ) A.- B. C.± D. 【解析】选B.因为α∈,所以cos α<0,sin α>0, 所以sin α==. 【巧思妙解】(排除法)选B.因为α∈,所以sin α>0,排除A,C,又-1<k<0,所以>1,故排除D. 假设将题中的“cos α=k,k∈R,α∈〞换为“sin α=k,k∈R,α∈〞,如何求cos α呢? 【解析】因为α∈,所以cos α<0,由平方关系知 cos α=-=-. 3.tan α=,那么: (1)=________. (2)sin2α+sin αcos α+2=________. 【解析】(1)===-. (2)sin2α+sin αcos α+2 =3sin2α+sin αcos α+2cos2α = ===. 答案:(1)- (2) 同角三角函数关系式的应用方法 (1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用=tan α可以实现角α的弦切互化. (2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系〞公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论. (3)分式中分子与分母是关于sin α,cos α的齐次式,往往转化为关于tan α的式子求解. 【秒杀绝招】 1.勾股数解T1,看到sin α=-,想到勾股数5,12,13,所以cos α=±, tan α=±,因为α为第四象限角, 所以tan α<0,tan α=-. 2.转化代入法解T3,(1)将tan α=转化为cos α=2sin α,将cos α=2sin α代入得=-.(2)同理可得. 考点二 诱导公式的应用 【典例】1.假设f(x)=sin+1,且f(2 020)=2,那么f(2 021)=________. 2.cos=a,那么cos+sin=________. 【解题导思】 序号 联想解题 1 看到形如2 020的数字,想到函数有周期性.三角函数可运用诱导公式求解 2 看到三角函数给值求值问题.想到找出角与未知角的关系,+=π,-=-θ 【解析】1.因为f(2 020)=sin+1=sin(1 010π+α)+1= sin α+1=2, 所以sin α=1,cos α=0. 所以f(2 021)=sin+1 =sin+1 =cos α+1=1. 答案:1 2.cos=cos=-cos =-a, sin=sin=cos=a, 所以cos+sin=-a+a=0. 答案:0 1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤 也就是:“负化正,大化小,化到锐角就好了〞. 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形. (2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. 1.(2023·淮南十校联考)sin=,那么cos的值是( ) A.- B. C. D.- 【解析】选A.因为sin=, 所以cos=cos=-sin=-. 2.(2023·阜阳模拟)计算sin +cos 的值为 ( ) A.-1 B.1 C.0 D.- 【解析】选A.原式=sin+cos =-sin -cos =--=-1. 考点三 同角关系与诱导公式的综合应用 命 题 精 解 读 1.考什么:(1)同角关系整体代换,sin α±cos α与sin α·cos α之间的关系,同角关系与诱导公式综合应用等. (2)考查逻辑推理,数学运算等核心素养,以及转化与化归的思想. 2.怎么考:诱导公式与同角关系结合考查求三角函数值,代数式的值等. 3.新趋势:以考查同角关系与诱导公式综合应用为主. 学 霸 好 方 法 同角三角函数根本关系式的应用技巧 1.切弦互化:主要利用公式tan θ=化成正弦、余弦,或者利用公式=tan θ化成正切 2.“1〞的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=(sin θ± cos θ)2∓2sin θcos θ=tan 3.和积转换:利用关系式(sin θ±cos θ)2= 1±2sin θcos θ进行变形、转化 整体代换问题 【典例】(2023·合肥模拟)tan α=-,那么sin α(sin α-cos α)= ( ) A. B. C. D. 【解析】选A.sin α(sin α-cos α)=sin2α-sin αcos α= =,将tan α=-代入得原式==. 整体代换是如何实现的? 提示:弦切互化法: 主要利用公式tan x=进行切化弦或弦化切,如,asin2x+ bsin xcos x+ccos2x等类型可进行弦化切. sin α±cos α与sin α·cos α之间的关系 【典例】(2023·苏州模拟)sin θ+cos θ=,θ∈(0,π),那么tan θ的值为________. 【解析】因为sin θ+cos θ=,① 两边平方,得1+2sin θcos θ=, 所以2sin θcos θ=-,又θ∈(0,π), 所以sin θ>0,cos θ<0, 因为(sin θ-cos θ)2=1-2sin θcos θ=, 所以sin θ-cos θ=,② 由①②得sin θ=,cos θ=-,所以tan θ=-. 答案:- 一般求值问题的步骤如何? 提示:(1)将条件或所求式子利用诱导公式进行化简. (2)从条件中结合三角函数关系得出需要的结论. (3)代入化简后的所求式子,得出最后的结论. 同角关系与诱导公式综合应用 【典例】(2023·保定模拟)tan(3π+α)=3,那么= ( ) A. B. C. D.2 【解析】选B.因为tan(3π+α)=3,所以tan α=3,所以===. 运用“切弦互化〞时有哪些考前须知? 提示:(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切〞的表达式,进行求值.常见的结构有: ①sin α,cos α的二次齐次式(如asin2α+bsin αcos α+ccos2α)的问题常采用“切〞代换法求解; ②sin α,cos α的齐次分式的问题常采用分式的根本性质进行变形. (2)切化弦:一般单独出现正切、余切的时候,运用公式tan α=,把式子中的切化成弦. 1.(2023·宝鸡模拟)假设=,那么tan θ的值为 ( ) A.1 B.-1 C.3 D.-3 【解析】选D.因为==,所以2(sin θ+cos θ)= sin θ-cos θ,所以sin θ=-3cos θ,所以tan θ=-3. 2.(2023·唐山模拟)sin=,所以tan α的值为 ( ) A.- B.- C.± D.± 【解析】选C.sin=sin=cos α=, 所以sin α=±,tan α==±. 3.α∈,tan(α-π)=-,那么sin α+cos α的值是________. 【解析】tan(α-π)=tan α=-,又α∈, 所以sin α=,cos α=-,所以sin α+cos α=-. 答案:- 1.(2023·南充模拟)设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数.假设f(2 019)=-1,那么f(2 020)= ( ) A.1 B.2 C.0 D.-1 【解析】选A.因为f(2 019)=asin(2 019π+α)+bcos(2 019π+β)=-asin α-bcos β=-1,所以asin α+bcos β=1, 所以f(2 020)=asin(2 020π+α)+bcos(2 020π+β)=asin α+bcos β=1. 2.(2023·淮安模拟)假设tan α+=,α∈,那么的值为________. 【解析】因为tan α+=,α∈, 所以tan α=2或(舍去), 所以= ===. 答案: 3.(2023·通州模拟)如图是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,假设直角三角形中较小的内角为θ,大正方形的面积是1,小正方形的面积是,那么sin2θ-cos2θ的值是________. 【解析】由题图知,每个直角三角形长直角边为cos θ,短直角边为sin θ,小正方形边长为cos θ-sin θ, 因为小正方形的面积是,所以(cos θ-sin θ)2=, 又θ为直角三角形中较小的锐角,所以cos θ>sin θ,cos θ-sin θ=,又(cos θ-sin θ)2=1-2sin θcos θ=, 所以2sin θcos θ=,(cos θ+sin θ)2=1+2sin θcos θ=,cos θ+ sin θ=, 所以sin2θ-cos2θ=(sin θ-cos θ)(cos θ+sin θ)=-×=-. 答案:- - 8 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 第四 三角函数 三角形 4.2 关系 诱导 公式 练习 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2023版高考数学一轮复习第四章三角函数解三角形4.2三角函数的同角关系诱导公式练习理北师大版.doc
链接地址:https://www.zixin.com.cn/doc/4433667.html
链接地址:https://www.zixin.com.cn/doc/4433667.html