2022届中考数学总复习(25)图形的对称-精练精析(1)及答案解析.docx
《2022届中考数学总复习(25)图形的对称-精练精析(1)及答案解析.docx》由会员分享,可在线阅读,更多相关《2022届中考数学总复习(25)图形的对称-精练精析(1)及答案解析.docx(10页珍藏版)》请在咨信网上搜索。
图形的变化——图形的对称1 一.选择题〔共9小题〕 1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.假设PM=2.5cm,PN=3cm,MN=4cm,那么线段QR的长为〔 〕 A.4.5 B.5.5 C.6.5 D.7 2.如图,直角坐标系中的五角星关于y轴对称的图形在〔 〕 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.以下四个图形: 其中是轴对称图形,且对称轴的条数为2的图形的个数是〔 〕 A.1 B.2 C.3 D.4 4下面几何图形中,一定是轴对称图形的有〔 〕 A.1个 B.2个 C.3个 D.4个 5.点A〔1,﹣2〕关于x轴对称的点的坐标是〔 〕 A.〔1,﹣2〕 B.〔﹣1,2〕 C.〔﹣1,﹣2〕 D.〔1,2〕 6.点P〔2,﹣5〕关于x轴对称的点的坐标为〔 〕 A.〔﹣2,5〕 B.〔2,5〕 C.〔﹣2,﹣5〕 D.〔2,﹣5〕 7.在平面直角坐标系中,点A〔2,3〕,那么点A关于x轴的对称点的坐标为〔 〕 A.〔3,2〕 B.〔2,﹣3〕 C.〔﹣2,3〕 D.〔﹣2,﹣3〕 8.点A〔a,2022〕与点B〔2022,b〕关于x轴对称,那么a+b的值为〔 〕 A.﹣1 B.1 C.2 D.3 9.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是〔 〕 A. B. C. D. 二.填空题〔共7小题〕 10.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,假设点P、Q分别是AD和AE上的动点,那么DQ+PQ的最小值是 _________ . 11.点P〔﹣2,3〕关于x轴的对称点P′的坐标为 _________ . 12.点P〔2,3〕关于x轴的对称点的坐标为 _________ . 13.点P〔1,﹣2〕关于y轴对称的点的坐标为 _________ . 14.假设点A〔m+2,3〕与点B〔﹣4,n+5〕关于y轴对称,那么m+n= _________ . 15.如图,在正方形方格中,阴影局部是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 _________ 种. 16.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,那么PM+PN的最小值是 _________ . 三.解答题〔共6小题〕 17.在平面直角坐标系中,点A〔﹣3,1〕,B〔﹣1,0〕,C〔﹣2,﹣1〕,请在图中画出△ABC,并画出与△ABC关于y轴对称的图形. 18.如图,抛物线的顶点为A〔1,4〕,抛物线与y轴交于点B〔0,3〕,与x轴交于C、D两点,点P是x轴上的一个动点. 〔1〕求此抛物线的解析式; 〔2〕当PA+PB的值最小时,求点P的坐标. 19.如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE. 〔1〕求证:△ADE≌△CED; 〔2〕求证:DE∥AC. 20.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,假设AD=3,BD=6. 〔1〕求证:△EDF≌△CBF; 〔2〕求∠EBC. 21.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O. 〔1〕求证:△AOE≌△COD; 〔2〕假设∠OCD=30°,AB=,求△AOC的面积. 22.准备一张矩形纸片,按如图操作: 将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点. 〔1〕求证:四边形BFDE是平行四边形; 〔2〕假设四边形BFDE是菱形,AB=2,求菱形BFDE的面积. 图形的变化——图形的对称1 参考答案与试题解析 一.选择题〔共9小题〕 1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.假设PM=2.5cm,PN=3cm,MN=4cm,那么线段QR的长为〔 〕 A. 4.5 B.5.5 C.6.5 D. 7 考点: 轴对称的性质. 专题: 几何图形问题. 分析: 利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长. 解答: 解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上, ∴PM=MQ,PN=NR, ∵PM=2.5cm,PN=3cm,MN=4cm, ∴RN=3cm,MQ=2.5cm, 即NQ=MN﹣MQ=4﹣2.5=1.5〔cm〕, 那么线段QR的长为:RN+NQ=3+1.5=4.5〔cm〕. 应选:A. 点评: 此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键. 2.如图,直角坐标系中的五角星关于y轴对称的图形在〔 〕 A. 第一象限 B第二象限 C.第三象限 D. 第四象限 考点: 轴对称的性质. 分析: 根据轴对称的性质作出选择. 解答: 解:如下列图,直角坐标系中的五角星关于y轴对称的图形在第一象限. 应选:A. 点评: 此题考查了轴对称的性质.此题难度不大,采用了“数形结合〞的数学思想. 3.以下四个图形: 其中是轴对称图形,且对称轴的条数为2的图形的个数是〔 〕 A. 1 B.2 C3 D. 4 考点: 轴对称图形. 分析: 根据轴对称图形及对称轴的定义求解. 解答: 解:第一个是轴对称图形,有2条对称轴; 第二个是轴对称图形,有2条对称轴; 第三个是轴对称图形,有2条对称轴; 第四个是轴对称图形,有3条对称轴; ∴对称轴的条数为2的图形的个数是3; 应选:C. 点评: 此题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两局部沿对称轴折叠后可重合; 4下面几何图形中,一定是轴对称图形的有〔 〕 A. 1个 B.2个 C.3个 D. 4个 考点: 轴对称图形. 分析: 利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可. 解答: 解:圆弧、角、等腰梯形都是轴对称图形. 应选:C. 点评: 此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形. 5.点A〔1,﹣2〕关于x轴对称的点的坐标是〔 〕 A. 〔1,﹣2〕 B.〔﹣1,2〕 C〔﹣1,﹣2〕 D. 〔1,2〕 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案. 解答: 解:点A〔1,﹣2〕关于x轴对称的点的坐标是〔1,2〕, 应选:D. 点评: 此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律. 6点P〔2,﹣5〕关于x轴对称的点的坐标为〔 〕 A. 〔﹣2,5〕 B〔2,5〕 C.〔﹣2,﹣5〕 D. 〔2,﹣5〕 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P〔x,y〕关于x轴的对称点P′的坐标是〔x,﹣y〕,进而得出答案. 解答: 解:∵点P〔2,﹣5〕关于x轴对称, ∴对称点的坐标为:〔2,5〕. 应选:B. 点评: 此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键. 7.在平面直角坐标系中,点A〔2,3〕,那么点A关于x轴的对称点的坐标为〔 〕 A. 〔3,2〕 B.〔2,﹣3〕 C.〔﹣2,3〕 D. 〔﹣2,﹣3〕 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P〔x,y〕关于x轴的对称点P′的坐标是〔x,﹣y〕,进而得出答案. 解答: 解:∵点A〔2,3〕, ∴点A关于x轴的对称点的坐标为:〔2,﹣3〕. 应选:B. 点评: 此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键. 8点A〔a,2022〕与点B〔2022,b〕关于x轴对称,那么a+b的值为〔 〕 A. ﹣1 B.1 C.2 D. 3 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标的特点,可以得到点A的坐标与点B的坐标的关系. 解答: 解:∵A〔a,2022〕与点B〔2022,b〕关于x轴对称, ∴a=2022,b=﹣2022 ∴a+b=1, 应选:B. 点评: 此题主要考查了关于x、y轴对称点的坐标特点,关键是掌握点的坐标的变化规律. 9.〔将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是〔 〕 A. B C. D. 考点: 剪纸问题. 分析: 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现. 解答: 解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论. 应选:B. 点评: 此题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现. 二.填空题〔共7小题〕 10.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,假设点P、Q分别是AD和AE上的动点,那么DQ+PQ的最小值是 2. 考点: 轴对称-最短路线问题;正方形的性质. 专题: 压轴题. 分析: 过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值. 解答: 解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′, ∵DD′⊥AE, ∴∠AFD=∠AFD′, ∵AF=AF,∠DAE=∠CAE, ∴△DAF≌△D′AF, ∴D′是D关于AE的对称点,AD′=AD=4, ∴D′P′即为DQ+PQ的最小值, ∵四边形ABCD是正方形, ∴∠DAD′=45°, ∴AP′=P′D′, ∴在Rt△AP′D′中, P′D′2+AP′2=AD′2,AD′2=16, ∵AP′=P′D', 2P′D′2=AD′2,即2P′D′2=16, ∴P′D′=2, 即DQ+PQ的最小值为2, 故答案为:2. 点评: 此题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键. 11.点P〔﹣2,3〕关于x轴的对称点P′的坐标为 〔﹣2,﹣3〕 . 考点: 关于x轴、y轴对称的点的坐标. 分析: 让点P的横坐标不变,纵坐标互为相反数即可得到点P关于x轴的对称点P′的坐标. 解答: 解:∵点P〔﹣2,3〕关于x轴的对称点P′, ∴点P′的横坐标不变,为﹣2;纵坐标为﹣3, ∴点P关于x轴的对称点P′的坐标为〔﹣2,﹣3〕. 故答案为:〔﹣2,﹣3〕. 点评: 此题主要考查了关于x轴对称点的性质,用到的知识点为:两点关于x轴对称,横纵坐标不变,纵坐标互为相反数. 12.点P〔2,3〕关于x轴的对称点的坐标为 〔2,﹣3〕 . 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P〔x,y〕关于x轴的对称点P′的坐标是〔x,﹣y〕得出即可. 解答: 解:∵点P〔2,3〕 ∴关于x轴的对称点的坐标为:〔2,﹣3〕. 故答案为:〔2,﹣3〕. 点评: 此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键. 13.点P〔1,﹣2〕关于y轴对称的点的坐标为 〔﹣1,﹣2〕 . 考点: 关于x轴、y轴对称的点的坐标. 专题: 常规题型. 分析: 根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数〞解答即可. 解答: 解:点P〔1,﹣2〕关于y轴对称的点的坐标为〔﹣1,﹣2〕. 故答案为:〔﹣1,﹣2〕. 点评: 此题考查了关于x轴、y轴对称的点的坐标,解决此题的关键是掌握好对称点的坐标规律: 〔1〕关于x轴对称的点,横坐标相同,纵坐标互为相反数; 〔2〕关于y轴对称的点,纵坐标相同,横坐标互为相反数; 〔3〕关于原点对称的点,横坐标与纵坐标都互为相反数. 14.假设点A〔m+2,3〕与点B〔﹣4,n+5〕关于y轴对称,那么m+n= 0 . 考点: 关于x轴、y轴对称的点的坐标. 分析: 根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数〞列出方程求解即可. 解答: 解:∵点A〔m+2,3〕与点B〔﹣4,n+5〕关于y轴对称, ∴m+2=4,3=n+5, 解得:m=2,n=﹣2, ∴m+n=0, 故答案为:0. 点评: 此题考查了关于x轴、y轴对称的点的坐标,解决此题的关键是掌握好对称点的坐标规律: 〔1〕关于x轴对称的点,横坐标相同,纵坐标互为相反数; 〔2〕关于y轴对称的点,纵坐标相同,横坐标互为相反数; 〔3〕关于原点对称的点,横坐标与纵坐标都互为相反数. 15.如图,在正方形方格中,阴影局部是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 3 种. 考点: 利用轴对称设计图案. 专题: 几何图形问题. 分析: 根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的局部能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果. 解答: 解:在1,2,3处分别涂黑都可得一个轴对称图形, 故涂法有3种, 故答案为:3. 点评: 考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形. 16如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,那么PM+PN的最小值是 5 . 考点: 轴对称-最短路线问题;勾股定理的应用;平行四边形的判定与性质;菱形的性质. 专题: 几何图形问题. 分析: 作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案. 解答: 解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC, ∵四边形ABCD是菱形, ∴AC⊥BD,∠QBP=∠MBP, 即Q在AB上, ∵MQ⊥BD, ∴AC∥MQ, ∵M为BC中点, ∴Q为AB中点, ∵N为CD中点,四边形ABCD是菱形, ∴BQ∥CD,BQ=CN, ∴四边形BQNC是平行四边形, ∴NQ=BC, ∵四边形ABCD是菱形, ∴CP=AC=3,BP=BD=4, 在Rt△BPC中,由勾股定理得:BC=5, 即NQ=5, ∴MP+NP=QP+NP=QN=5, 故答案为:5. 点评: 此题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置. 三.解答题〔共6小题〕 17.在平面直角坐标系中,点A〔﹣3,1〕,B〔﹣1,0〕,C〔﹣2,﹣1〕,请在图中画出△ABC,并画出与△ABC关于y轴对称的图形. 考点: 作图-轴对称变换. 专题: 作图题. 分析: 根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案. 解答: 解:如下列图:△DEF与△ABC关于y轴对称的图形. 点评: 此题主要考查了轴对称变换,得出对应点坐标是解题关键. 18.如图,抛物线的顶点为A〔1,4〕,抛物线与y轴交于点B〔0,3〕,与x轴交于C、D两点,点P是x轴上的一个动点. 〔1〕求此抛物线的解析式; 〔2〕当PA+PB的值最小时,求点P的坐标. 考点: 轴对称-最短路线问题;待定系数法求二次函数解析式. 专题: 数形结合. 分析: 〔1〕设抛物线顶点式解析式y=a〔x﹣1〕2+4,然后把点B的坐标代入求出a的值,即可得解; 〔2〕先求出点B关于x轴的对称点B′的坐标,连接AB′与x轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB′的解析式,再求出与x轴的交点即可. 解答: 解:〔1〕∵抛物线的顶点为A〔1,4〕, ∴设抛物线的解析式y=a〔x﹣1〕2+4, 把点B〔0,3〕代入得,a+4=3, 解得a=﹣1, ∴抛物线的解析式为y=﹣〔x﹣1〕2+4; 〔2〕点B关于x轴的对称点B′的坐标为〔0,﹣3〕, 由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P, 设直线AB′的解析式为y=kx+b〔k≠0〕, 那么, 解得, ∴直线AB′的解析式为y=7x﹣3, 令y=0,那么7x﹣3=0, 解得x=, 所以,当PA+PB的值最小时的点P的坐标为〔,0〕. 点评: 此题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,〔1〕利用顶点式解析式求解更简便,〔2〕熟练掌握点P确实定方法是解题的关键. 19.如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE. 〔1〕求证:△ADE≌△CED; 〔2〕求证:DE∥AC. 考点: 翻折变换〔折叠问题〕;全等三角形的判定与性质;矩形的性质. 专题: 证明题. 分析: 〔1〕根据矩形的性质和折叠的性质可得BC=CE=AD,AB=AE=CD,根据SSS可证△ADE≌△CED〔SSS〕; 〔2〕根据全等三角形的性质可得∠EDC=∠DEA,由于△ACE与△ACB关于AC所在直线对称,可得∠OAC=∠CAB,根据等量代换可得∠OAC=∠DEA,再根据平行线的判定即可求解. 解答: 证明:〔1〕∵四边形ABCD是矩形, ∴AD=BC,AB=CD, 又∵AC是折痕, ∴BC=CE=AD, AB=AE=CD, 在△ADE与△CED中, , ∴△ADE≌△CED〔SSS〕; 〔2〕∵△ADE≌△CED, ∴∠EDC=∠DEA, 又∵△ACE与△ACB关于AC所在直线对称, ∴∠OAC=∠CAB, ∵∠OCA=∠CAB, ∴∠OAC=∠OCA, ∴2∠OAC=2∠DEA, ∴∠OAC=∠DEA, ∴DE∥AC. 点评: 此题考查了翻折变换〔折叠问题〕,矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键. 20.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,假设AD=3,BD=6. 〔1〕求证:△EDF≌△CBF; 〔2〕求∠EBC. 考点: 翻折变换〔折叠问题〕;全等三角形的判定与性质;矩形的性质. 专题: 证明题. 分析: 〔1〕首先根据矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定△DEF≌△BCF; 〔2〕在Rt△ABD中,根据AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC的度数. 解答: 〔1〕证明:由折叠的性质可得:DE=BC,∠E=∠C=90°, 在△DEF和△BCF中, , ∴△DEF≌△BCF〔AAS〕; 〔2〕解:在Rt△ABD中, ∵AD=3,BD=6, ∴∠ABD=30°, 由折叠的性质可得;∠DBE=∠ABD=30°, ∴∠EBC=90°﹣30°﹣30°=30°. 点评: 此题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键. 21.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O. 〔1〕求证:△AOE≌△COD; 〔2〕假设∠OCD=30°,AB=,求△AOC的面积. 考点: 翻折变换〔折叠问题〕. 专题: 证明题. 分析: 〔1〕根据矩形的对边相等可得AB=CD,∠B=∠D=90°,再根据翻折的性质可得AB=AE,∠B=∠E,然后求出AE=CD,∠D=∠E,再利用“角角边〞证明即可; 〔2〕根据全等三角形对应边相等可得AO=CO,解直角三角形求出CO,然后利用三角形的面积公式列式计算即可得解. 解答: 〔1〕证明:∵四边形ABCD是矩形, ∴AB=CD,∠B=∠D=90°, ∵矩形ABCD沿对角线AC折叠点B落在点E处, ∴AB=AE,∠B=∠E, ∴AE=CD,∠D=∠E, 在△AOE和△COD中, , ∴△AOE≌△COD〔AAS〕; 〔2〕解:∵△AOE≌△COD, ∴AO=CO, ∵∠OCD=30°,AB=, ∴CO=CD÷cos30°=÷=2, ∴△AOC的面积=AO•CD=×2×=. 点评: 此题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,熟记各性质并确定出三角形全等的条件是解题的关键. 22.准备一张矩形纸片,按如图操作: 将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点. 〔1〕求证:四边形BFDE是平行四边形; 〔2〕假设四边形BFDE是菱形,AB=2,求菱形BFDE的面积. 考点: 翻折变换〔折叠问题〕;平行四边形的判定;菱形的性质. 分析: 〔1〕根据四边形ABCD是矩形和折叠的性质可得EB∥DF,DE∥BF,根据平行四边形判定推出即可. 〔2〕求出∠ABE=30°,根据直角三角形性质求出AE、BE,再根据菱形的面积计算即可求出答案. 解答: 〔1〕证明:∵四边形ABCD是矩形, ∴∠A=∠C=90°,AB=CD,AB∥CD, ∴∠ABD=∠CDB, ∴∠EBD=∠ABD=∠FDB, ∴EB∥DF, ∵ED∥BF, ∴四边形BFDE为平行四边形. 〔2〕解:∵四边形BFDE为菱形, ∴BE=ED,∠EBD=∠FBD=∠ABE, ∵四边形ABCD是矩形, ∴AD=BC,∠ABC=90°, ∴∠ABE=30°, ∵∠A=90°,AB=2, ∴AE==,BF=BE=2AE=, 故菱形BFDE的面积为:×2=. 点评: 此题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 中考 数学 复习 25 图形 对称 精练 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文