2022年湖南省邵阳市中考数学试卷解析.docx
《2022年湖南省邵阳市中考数学试卷解析.docx》由会员分享,可在线阅读,更多相关《2022年湖南省邵阳市中考数学试卷解析.docx(30页珍藏版)》请在咨信网上搜索。
2022年湖南省邵阳市中考数学试卷 一、选择题〔共10小题,每题3分,总分值30分〕 1.〔3分〕〔2022•邵阳〕计算〔﹣3〕+〔﹣9〕的结果是〔 〕 A. ﹣12 B. ﹣6 C. +6 D. 12 2.〔3分〕〔2022•邵阳〕如图,以下几何体的左视图不是矩形的是〔 〕 A. B. C. D. 3.〔3分〕〔2022•邵阳〕2022年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的选项是〔 〕 A. 0.5×10﹣9米 B. 5×10﹣8米 C. 5×10﹣9米 D. 5×10﹣7米 4.〔3分〕〔2022•邵阳〕如图是某校参加各兴趣小组的学生人数分布扇形统计图,那么参加人数最多的兴趣小组是〔 〕 A. 棋类 B. 书画 C. 球类 D. 演艺 5.〔3分〕〔2022•邵阳〕将直尺和直角三角板按如图方式摆放,∠1=30°,那么∠2的大小是〔 〕 A. 30° B. 45° C. 60° D. 65° 6.〔3分〕〔2022•邵阳〕a+b=3,ab=2,那么a2+b2的值为〔 〕 A. 3 B. 4 C. 5 D. 6 7.〔3分〕〔2022•邵阳〕如图,四边形ABCD内接于⊙O,∠ADC=140°,那么∠AOC的大小是〔 〕 A. 80° B. 100° C. 60° D. 40° 8.〔3分〕〔2022•邵阳〕不等式组的整数解的个数是〔 〕 A. 3 B. 5 C. 7 D. 无数个 9.〔3分〕〔2022•邵阳〕如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,那么以下列图中能较好反映y与t的函数关系的图象是〔 〕 A. B. C. D. 10.〔3分〕〔2022•邵阳〕如图,在矩形ABCD中,AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2022次后,顶点A在整个旋转过程中所经过的路程之和是〔 〕 A. 2022π B. 3019.5π C. 3018π D. 3024π 二、填空题〔共8小题,每题3分,总分值24分〕 11.〔3分〕〔2022•邵阳〕多项式a2﹣4因式分解的结果是. 12.〔3分〕〔2022•邵阳〕如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:. 13.〔3分〕〔2022•邵阳〕以下计算中正确的序号是. ①2﹣=2;②sin30°=;③|﹣2|=2. 14.〔3分〕〔2022•邵阳〕某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,那么他选对的概率是. 15.〔3分〕〔2022•邵阳〕某正n边形的一个内角为108°,那么n=. 16.〔3分〕〔2022•邵阳〕关于x的方程x2+2x﹣m=0有两个相等的实数根,那么m=. 17.〔3分〕〔2022•邵阳〕如图,某登山运发动从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,那么他实际上升了米. 18.〔3分〕〔2022•邵阳〕抛物线y=x2+2x+3的顶点坐标是. 三、解答题〔共3小题,总分值24分〕 19.〔8分〕〔2022•邵阳〕解方程组:. 20.〔8分〕〔2022•邵阳〕先化简〔﹣〕•,再从0,1,2中选一个适宜的x的值代入求值. 21.〔8分〕〔2022•邵阳〕如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF. 〔1〕求证:DE=CF; 〔2〕求EF的长. 四、应用题〔共3个小题,每题8分,共24分〕 22.〔8分〕〔2022•邵阳〕亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如下列图的统计图表. 类别 时间t〔小时〕 人数 A t≤0.5 5 B 0.5<t≤1 20 C 1<t≤1.5 a D 1.5<t≤2 30 E t>2 10 请根据图表信息解答以下问题: 〔1〕a=; 〔2〕补全条形统计图; 〔3〕小王说:“我每天的锻炼时间是调查所得数据的中位数〞,问小王每天进行体育锻炼的时间在什么范围内 〔4〕据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数. 23.〔8分〕〔2022•邵阳〕为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款本钱为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y〔件〕与销售单价x〔元〕满足一次函数关系:y=﹣10x+1200. 〔1〕求出利润S〔元〕与销售单价x〔元〕之间的关系式〔利润=销售额﹣本钱〕; 〔2〕当销售单价定为多少时,该公司每天获取的利润最大最大利润是多少元 24.〔8分〕〔2022•邵阳〕如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度. 五、综合题〔共2个小题,25题8分,26题10分,共18分〕 25.〔8分〕〔2022•邵阳〕在Rt△ABC中,∠ACB=90°,现按如下步骤作图: ①分别以A,C为圆心,a为半径〔a>AC〕作弧,两弧分别交于M,N两点; ②过M,N两点作直线MN交AB于点D,交AC于点E; ③将△ADE绕点E顺时针旋转180°,设点D的像为点F. 〔1〕请在图中直线标出点F并连接CF; 〔2〕求证:四边形BCFD是平行四边形; 〔3〕当∠B为多少度时,四边形BCFD是菱形. 26.〔10分〕〔2022•邵阳〕如图,直线y=x+k和双曲线y=〔k为正整数〕交于A,B两点. 〔1〕当k=1时,求A、B两点的坐标; 〔2〕当k=2时,求△AOB的面积; 〔3〕当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,假设S1+S2+…+Sn=,求n的值. 2022年湖南省邵阳市中考数学试卷 参考答案与试题解析 一、选择题〔共10小题,每题3分,总分值30分〕 1.〔3分〕〔2022•邵阳〕计算〔﹣3〕+〔﹣9〕的结果是〔 〕 A. ﹣12 B. ﹣6 C. +6 D. 12 考点: 有理数的加法.菁优网版权所有 分析: 根据有理数的加法运算法那么计算即可得解. 解答: 解:〔﹣3〕+〔﹣9〕=﹣〔3+9〕=﹣12,应选:A. 点评: 此题考查了有理数的加法运算,是根底题,熟记运算法那么是解题的关键. 2.〔3分〕〔2022•邵阳〕如图,以下几何体的左视图不是矩形的是〔 〕 A. B. C. D. 考点: 简单几何体的三视图.菁优网版权所有 分析: 根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答. 解答: 解:A、圆柱的左视图是矩形,不符合题意; B、圆锥的左视图是等腰三角形,符合题意; C、三棱柱的左视图是矩形,不符合题意; D、长方体的左视图是矩形,不符合题意. 应选:B. 点评: 此题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于根底题. 3.〔3分〕〔2022•邵阳〕2022年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的选项是〔 〕 A. 0.5×10﹣9米 B. 5×10﹣8米 C. 5×10﹣9米 D. 5×10﹣7米 考点: 科学记数法—表示较小的数.菁优网版权所有 分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 解答: 解:0.000 000 05米用科学记数法表示为5×10﹣8米. 应选:B. 点评: 此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.〔3分〕〔2022•邵阳〕如图是某校参加各兴趣小组的学生人数分布扇形统计图,那么参加人数最多的兴趣小组是〔 〕 A. 棋类 B. 书画 C. 球类 D. 演艺 考点: 扇形统计图.菁优网版权所有 分析: 根据扇形统计图中扇形的面积越大,参加的人数越多,可得答案. 解答: 解:35%>30%>20%>10%>5%, 参加球类的人数最多, 应选:C. 点评: 此题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映局部占总体的百分比大小. 5.〔3分〕〔2022•邵阳〕将直尺和直角三角板按如图方式摆放,∠1=30°,那么∠2的大小是〔 〕 A. 30° B. 45° C. 60° D. 65° 考点: 平行线的性质.菁优网版权所有 分析: 先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论. 解答: 解:∵∠1+∠3=90°,∠1=30°, ∴∠3=60°. ∵直尺的两边互相平行, ∴∠2=∠3=60°. 应选C. 点评: 此题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等. 6.〔3分〕〔2022•邵阳〕a+b=3,ab=2,那么a2+b2的值为〔 〕 A. 3 B. 4 C. 5 D. 6 考点: 完全平方公式.菁优网版权所有 分析: 根据完全平方公式得出a2+b2=〔a+b〕2﹣2ab,代入求出即可. 解答: 解:∵a+b=3,ab=2, ∴a2+b2 =〔a+b〕2﹣2ab =32﹣2×2 =5, 应选C 点评: 此题考查了完全平方公式的应用,注意:a2+b2=〔a+b〕2﹣2ab. 7.〔3分〕〔2022•邵阳〕如图,四边形ABCD内接于⊙O,∠ADC=140°,那么∠AOC的大小是〔 〕 A. 80° B. 100° C. 60° D. 40° 考点: 圆内接四边形的性质;圆周角定理.菁优网版权所有 分析: 根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°. 解答: 解:∵四边形ABCD是⊙O的内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABC=180°﹣140°=40°. ∴∠AOC=2∠ABC=80°. 应选B. 点评: 此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键. 8.〔3分〕〔2022•邵阳〕不等式组的整数解的个数是〔 〕 A. 3 B. 5 C. 7 D. 无数个 考点: 一元一次不等式组的整数解.菁优网版权所有 分析: 先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可. 解答: 解:, 解①得:x>﹣2, 解②得:x≤3. 那么不等式组的解集是:﹣2<x≤3. 那么整数解是:﹣1,0,1,2,3共5个. 应选B. 点评: 此题考查不等式组的解法及整数解确实定.求不等式组的解集,应遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 9.〔3分〕〔2022•邵阳〕如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,那么以下列图中能较好反映y与t的函数关系的图象是〔 〕 A. B. C. D. 考点: 动点问题的函数图象.菁优网版权所有 专题: 数形结合. 分析: 作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t〔0≤t≤m〕;当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB〔m≤t≤2m〕,即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断. 解答: 解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m, ∵△ABC为等腰三角形, ∴∠B=∠C,BD=CD, 当点F从点B运动到D时,如图1, 在Rt△BEF中,∵tanB=, ∴y=tanB•t〔0≤t≤m〕; 当点F从点D运动到C时,如图2, 在Rt△CEF中,∵tanC=, ∴y=tanC•CF =tanC•〔2m﹣t〕 =﹣tanB•t+2mtanB〔m≤t≤2m〕. 应选B. 点评: 此题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围. 10.〔3分〕〔2022•邵阳〕如图,在矩形ABCD中,AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2022次后,顶点A在整个旋转过程中所经过的路程之和是〔 〕 A. 2022π B. 3019.5π C. 3018π D. 3024π 考点: 旋转的性质;弧长的计算.菁优网版权所有 专题: 规律型. 分析: 首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可. 解答: 解:转动一次A的路线长是:, 转动第二次的路线长是:, 转动第三次的路线长是:, 转动第四次的路线长是:0, 转动五次A的路线长是:, 以此类推,每四次循环, 故顶点A转动四次经过的路线长为:+2π=6π, 2022÷4=503余3 顶点A转动四次经过的路线长为:6π×504=3024π. 应选:D. 点评: 此题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键. 二、填空题〔共8小题,每题3分,总分值24分〕 11.〔3分〕〔2022•邵阳〕多项式a2﹣4因式分解的结果是 〔a+2〕〔a﹣2〕 . 考点: 因式分解-运用公式法.菁优网版权所有 分析: 直接利用平方差公式分解因式得出即可. 解答: 解:a2﹣4=〔a+2〕〔a﹣2〕. 故答案为:〔a+2〕〔a﹣2〕. 点评: 此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键. 12.〔3分〕〔2022•邵阳〕如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形: △ADF≌△BEC . 考点: 全等三角形的判定;平行四边形的性质.菁优网版权所有 专题: 开放型. 分析: 由平行四边形的性质,可得到等边或等角,从而判定全等的三角形. 解答: 解:∵四边形ABCD是平行四边形, ∴AD=BC,∠DAC=∠BCA, ∵BE∥DF, ∴∠DFC=∠BEA, ∴∠AFD=∠BEC, 在△ADF与△CEB中, , ∴△ADF≌△BEC〔AAS〕, 故答案为:△ADF≌△BEC. 点评: 此题考查了三角形全等的判定,平行四边形的性质,平行线的性质,根据平行四边形的性质对边平行和角相等从而得到三角形全等的条件是解题的关键. 13.〔3分〕〔2022•邵阳〕以下计算中正确的序号是 ③ . ①2﹣=2;②sin30°=;③|﹣2|=2. 考点: 二次根式的加减法;绝对值;特殊角的三角函数值.菁优网版权所有 分析: 根据二次根式的加减法、三角函数值、绝对值,即可解答. 解答: 解:①2﹣=,故错误; ②sin30°=,故错误; ③|﹣2|=2,正确. 故答案为:③. 点评: 此题考查了二次根式的加减法、三角函数值、绝对值,解决此题的关键是熟记相关法那么. 14.〔3分〕〔2022•邵阳〕某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,那么他选对的概率是. 考点: 概率公式.菁优网版权所有 分析: 用正确的个数除以选项的总数即可求得选对的概率. 解答: 解:∵四个选项中有且只有一个是正确的, ∴他选对的概率是, 故答案为:. 点评: 此题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=. 15.〔3分〕〔2022•邵阳〕某正n边形的一个内角为108°,那么n= 5 . 考点: 多边形内角与外角.菁优网版权所有 分析: 易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数. 解答: 解:∵正n边形的一个内角为108°, ∴正n边形的一个外角为180°﹣108°=72°, ∴n=360°÷72°=5. 故答案为:5. 点评: 考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数. 16.〔3分〕〔2022•邵阳〕关于x的方程x2+2x﹣m=0有两个相等的实数根,那么m= ﹣1 . 考点: 根的判别式.菁优网版权所有 分析: 根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可. 解答: 解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根, ∴△=0, ∴22﹣4×1×〔﹣m〕=0, 解得m=﹣1. 故答案为;﹣1. 点评: 此题考查了一元二次方程根的情况与判别式△的关系: 〔1〕△>0⇔方程有两个不相等的实数根; 〔2〕△=0⇔方程有两个相等的实数根; 〔3〕△<0⇔方程没有实数根. 17.〔3分〕〔2022•邵阳〕如图,某登山运发动从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,那么他实际上升了 1000 米. 考点: 解直角三角形的应用-坡度坡角问题.菁优网版权所有 分析: 过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可. 解答: 解:过点B作BC⊥水平面于点C, 在Rt△ABC中, ∵AB=2000米,∠A=30°, ∴BC=ABsin30°=2000×=1000. 故答案为:1000. 点评: 此题考查了解直角三角形的应用,解答此题的关键是根据坡角构造直角三角形,利用三角函数的知识进行求解. 18.〔3分〕〔2022•邵阳〕抛物线y=x2+2x+3的顶点坐标是 〔﹣1,2〕 . 考点: 二次函数的性质.菁优网版权所有 分析: 抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解答: 解:∵y=x2+2x+3=x2+2x+1﹣1+3=〔x+1〕2+2, ∴抛物线y=x2﹣2x+3的顶点坐标是〔﹣1,2〕. 故答案为:〔﹣1,2〕. 点评: 此题考查了二次函数的性质,二次函数y=a〔x﹣h〕2+k的顶点坐标为〔h,k〕,对称轴为x=h,此题还考查了配方法求顶点式. 三、解答题〔共3小题,总分值24分〕 19.〔8分〕〔2022•邵阳〕解方程组:. 考点: 解二元一次方程组.菁优网版权所有 专题: 计算题. 分析: 方程组利用加减消元法求出解即可. 解答: 解:, ①+②得:3x=3,即x=1, 把x=1代入①得:y=2, 那么方程组的解为. 点评: 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.〔8分〕〔2022•邵阳〕先化简〔﹣〕•,再从0,1,2中选一个适宜的x的值代入求值. 考点: 分式的化简求值.菁优网版权所有 专题: 计算题. 分析: 原式括号中两项通分并利用同分母分式的减法法那么计算,约分得到最简结果,把x=1代入计算即可求出值. 解答: 解:原式=•=, 当x=1时,原式=. 点评: 此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键. 21.〔8分〕〔2022•邵阳〕如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF. 〔1〕求证:DE=CF; 〔2〕求EF的长. 考点: 三角形中位线定理;等边三角形的性质;平行四边形的判定与性质.菁优网版权所有 分析: 〔1〕直接利用三角形中位线定理得出DEBC,进而得出DE=FC; 〔2〕利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长. 解答: 〔1〕证明:∵D、E分别为AB、AC的中点, ∴DEBC, ∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF; 〔2〕解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF, ∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=. 点评: 此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DEBC是解题关键. 四、应用题〔共3个小题,每题8分,共24分〕 22.〔8分〕〔2022•邵阳〕亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如下列图的统计图表. 类别 时间t〔小时〕 人数 A t≤0.5 5 B 0.5<t≤1 20 C 1<t≤1.5 a D 1.5<t≤2 30 E t>2 10 请根据图表信息解答以下问题: 〔1〕a= 35 ; 〔2〕补全条形统计图; 〔3〕小王说:“我每天的锻炼时间是调查所得数据的中位数〞,问小王每天进行体育锻炼的时间在什么范围内 〔4〕据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数. 考点: 条形统计图;用样本估计总体;频数〔率〕分布表;中位数.菁优网版权所有 分析: 〔1〕用样本总数100减去A、B、D、E类的人数即可求出a的值; 〔2〕由〔1〕中所求a的值得到C类别的人数,即可补全条形统计图; 〔3〕根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可; 〔4〕用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可. 解答: 解:〔1〕a=100﹣〔5+20+30+10〕=35. 故答案为35; 〔2〕补全条形统计图如下所示: 〔3〕根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5; 〔4〕30×=22.5〔万人〕. 即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人. 点评: 此题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.也考查了中位数的定义以及利用样本估计总体. 23.〔8分〕〔2022•邵阳〕为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款本钱为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y〔件〕与销售单价x〔元〕满足一次函数关系:y=﹣10x+1200. 〔1〕求出利润S〔元〕与销售单价x〔元〕之间的关系式〔利润=销售额﹣本钱〕; 〔2〕当销售单价定为多少时,该公司每天获取的利润最大最大利润是多少元 考点: 二次函数的应用.菁优网版权所有 分析: 〔1〕根据“总利润=单件的利润×销售量〞列出二次函数关系式即可; 〔2〕将得到的二次函数配方后即可确定最大利润. 解答: 解:〔1〕S=y〔x﹣20〕=〔x﹣40〕〔﹣10x+1200〕=﹣10x2+1600x﹣48000; 〔2〕S=﹣10x2+1600x﹣48000=﹣10〔x﹣80〕2+16000, 那么当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元. 点评: 此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值〔或最小值〕. 24.〔8分〕〔2022•邵阳〕如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度. 考点: 相似三角形的应用.菁优网版权所有 分析: 根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案. 解答: 解:由题意可得:△DEF∽△DCA, 那么=, ∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m, ∴=, 解得:AC=10, 故AB=AC+BC=10+1.5=11.5〔m〕, 答:旗杆的高度为11.5m. 点评: 此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键. 五、综合题〔共2个小题,25题8分,26题10分,共18分〕 25.〔8分〕〔2022•邵阳〕在Rt△ABC中,∠ACB=90°,现按如下步骤作图: ①分别以A,C为圆心,a为半径〔a>AC〕作弧,两弧分别交于M,N两点; ②过M,N两点作直线MN交AB于点D,交AC于点E; ③将△ADE绕点E顺时针旋转180°,设点D的像为点F. 〔1〕请在图中直线标出点F并连接CF; 〔2〕求证:四边形BCFD是平行四边形; 〔3〕当∠B为多少度时,四边形BCFD是菱形. 考点: 菱形的判定;平行四边形的判定;作图-旋转变换.菁优网版权所有 分析: 〔1〕根据题意作出图形即可; 〔2〕首先根据作图得到MN是AC的垂直平分线,然后得到DE等于BC的一半,从而得到DE=EF,即DF=BC,然后利用一组对边平行且相等的四边形是平行四边形进行判定即可; 〔3〕得到BD=CB后利用邻边相等的平行四边形是菱形进行判定即可. 解答: 解:〔1〕如下列图: 〔2〕∵根据作图可知:MN垂直平分线段AC, ∴D、E为线段AB和AC的中点, ∴DE是△ABC的中位线, ∴DE=BC, ∵将△ADE绕点E顺时针旋转180°,点D的像为点F, ∴EF=ED, ∴DF=BC, ∵DE∥BC, ∴四边形BCFD是平行四边形; 〔3〕当∠B=60°时,四边形BCFD是菱形; ∵∠B=60°, ∴BC=AB, ∵DB=AB, ∴DB=CB, ∵四边形BCFD是平行四边形, ∴四边形BCFD是菱形. 点评: 此题考查了菱形的判定、平行四边形的判定及根本作图的知识,解题的关键是能够了解各种特殊四边形的判定定理,难度不大. 26.〔10分〕〔2022•邵阳〕如图,直线y=x+k和双曲线y=〔k为正整数〕交于A,B两点. 〔1〕当k=1时,求A、B两点的坐标; 〔2〕当k=2时,求△AOB的面积; 〔3〕当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,假设S1+S2+…+Sn=,求n的值. 考点: 反比例函数与一次函数的交点问题.菁优网版权所有 分析: 〔1〕由k=1得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B两点的坐标; 〔2〕先由k=2得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B两点的坐标;再求出直线AB的解析式,得到直线AB与y轴的交点〔0,2〕,利用三角形的面积公式,即可解答. 〔3〕根据当k=1时,S1=×1×〔1+2〕=,当k=2时,S2=×2×〔1+3〕=4,…得到当k=n时,Sn=n〔1+n+1〕=n2+n,根据假设S1+S2+…+Sn=,列出等式,即可解答. 解答: 解:〔1〕当k=1时,直线y=x+k和双曲线y=化为:y=x+1和y=, 解得,, ∴A〔1,2〕,B〔﹣2,﹣1〕, 〔2〕当k=2时,直线y=x+k和双曲线y=化为:y=x+2和y=, 解得,, ∴A〔1,3〕,B〔﹣3,﹣1〕 设直线AB的解析式为:y=mx+n, ∴ ∴, ∴直线AB的解析式为:y=x+2 ∴直线AB与y轴的交点〔0,2〕, ∴S△AOB=×2×1+×2×3=4; 〔3〕当k=1时,S1=×1×〔1+2〕=, 当k=2时,S2=×2×〔1+3〕=4, … 当k=n时,Sn=n〔1+n+1〕=n2+n, ∵S1+S2+…+Sn=, ∴×〔…+n2〕+〔1+2+3+…n〕=, 整理得:, 解得:n=6. 点评: 此题考查了一次函数与反比例函数的交点,解决此题的关键是联立函数解析式,组成方程组,求交点坐标.在〔3〕中注意找到三角形面积的规律是关键. 菁优网 2022年7月7日- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 湖南省 邵阳市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文