2017-2018学年高中数学人教A版必修1学案:3.2.2函数模型应用举例课堂导学案-.doc
《2017-2018学年高中数学人教A版必修1学案:3.2.2函数模型应用举例课堂导学案-.doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学人教A版必修1学案:3.2.2函数模型应用举例课堂导学案-.doc(4页珍藏版)》请在咨信网上搜索。
3.2.2 函数模型应用举例 课堂导学 三点剖析 一、函数模型的确定 【例1】 以下是某地区不同身高的未成年男性体重平均值表: 身高/cm 60 70 80 90 100 110 体重/kg 6.13 7.90 9.99 12.15 15.02 17.50 身高cm 120 130 140 150 160 170 体重/kg 20.92 26.86 31.11 38.85 47.25 55.05 (1)根据表中提供的数据,能否从我们已学过的函数y=ax+b,y=alnx+b,y=a·bx中选择一种函数,使它比较近似地反映出该地区未成年男性体重y关于身高x的函数关系?试求出这个函数的解析式. (2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区某中学一男生身高为175 cm,体重为78 kg,他的体重是否正常? 思路分析:可先根据表中的数据,描点画出函数图象(散点图),再根据散点图的形状判断应当选择哪种函数关系,然后根据已知数据求出所选式子的待定常数,最后将表中的身高数据代入求得的解析式,看所得的函数值是否与已知体重数据基本吻合. 解:(1)以身高为横坐标,体重为纵坐标,在直角坐标系中画出散点图,如右图.根据点的分布特征可考虑用函数y=a·bx反映上述数据之间的对应关系. 把x=70,y=7.90和x=170,y=55.05两组数据分别代入y=a·bx, 得 解得a≈2,b≈1.02, 故该地区未成年男性平均体重关于身高的近似函数关系式可选取为y=2×1.02x. 将已知数据代入所得函数解析式,可知所求函数能较好的反映该地区未成年男性体重与身高的关系. (2)把x=175代入y=2×1.02x, 得y=2×1.02175≈63.98. ∵78÷63.98≈1.22>1.2,∴这名男生体重偏胖. 二、数学模型的应用 【例2】 某家庭某年一月份、二月份和三月份的煤气用量和交付费用如下表所示: 月份 用气量 煤气费 1 4 m3 4元 2 25 m3 14元 3 35 m3 19元 该市煤气收费方法是:煤气费=基本费+超额费+保险费.若该月用气量不超过最低量A m3,那么只付基本费3元和每户每月的定额保险费C元;若用气量超过A m3,那么超出部分付超额费,每立方米为B元,又知保险费C不超过5元,试根据上述条件及数据求A、B的值. 思路分析:关键在于找出煤气费与用量间的函数关系,这显然是一分段函数. 解:设月用气量为x m3,支付的煤气费为y元,依题意有, ∵0<C≤5, ∴3<3+C≤8. ∴二、三月份煤气费满足 若一月份用气超过A m3,则4>A, ∴4=3+0.5(4-A)+C,这不可能. ∴4=3+C,C=1,B=,A=5. 温馨提示 解决实际问题,首先在审清题意的基础上,将实际问题转化成相应的函数来解决.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型.并利用所得函数模型解析有关现象.对某些发展趋势进行预测,在用函数模型解决实际问题的过程中,涉及复杂的数据处理,要注意充分发挥信息技术的作用,简化过程、减小计算量. 各个击破 类题演练1 我国1990—2000年的国内生产总值如下表所示: 年份 1990 1991 1992 1993 产值/亿元 18 598.4 21 662.5 26 651.9 34 560.5 年份 1994 1995 1996 1997 产值/亿元 46 670.0 57 494.9 66 850.5 73 142.7 年份 1998 1999 2000 产值/亿元 76 967.1 80 422.8 89 404.0 (1)描点画出1990—2000年国内生产总值的图象; (2)建立一个能基本反映这一时期国内生产总值发展变化的函数模型,并画出其图象; (3)根据所建立的函数模型,预测2004年的国内生产总值. 解析:(1)取自变量x为0,1,…,10,对应年份为1990,1991,…,2000得函数图象,如下图: (2)根据图象,取函数模型y=a·bx. 取2组数据: (2,26 651.9),(8,76 967.1). 代入y=a·bx得 解得a≈18 715.5,b≈1.19,得函数模型: y=18 715.5×1.19x. 将其他数据代入上述函数解析式,基本吻合. (3)令x=14得y≈213 726.8(亿元), 根据所建函数模型预测2004年的国内生产总值为213 726.8亿元. 类题演练2 已知某企业的原有产品,每年投入x万元,可获得的年利润可表示为函数:P(x)=-·(x-30)2+8(万元).现开发一个回报率高、科技含量高的新产品,据预测,新产品每年投入x万元,可获得年利润Q(x)=-(100-x)2+(100-x)(万元).新产品开发从“十五”计划的第一年开始,用两年时间完成.这两年,每年从100万元的生产准备金中,拿出80万元来投入新产品开发.从第三年开始这100万元全部用于新旧两种产品的生产投入. (1)为了解决资金缺口,第一年初向银行贷款1 000万元,利率为5.5%(不计复利),第五年底一次性应向银行偿还本息共计多少万元? (2)从新产品投产的第三年开始,从100万元的生产准备金中,新旧两种产品各应投入多少万元,才能使年利润最大? (3)从新旧产品的五年总利润中最高拿出70%来,能否还清对银行的欠款? 解析:(1)五年利息是1 000×0.055×5=275(万元),本利和为1 275万元. (2)设从第三年年初起每年旧产品投入x万元,新产品投入(100-x)万元,于是每年的利润是W=P(x)+Q(100-x)=[-(x-30)2+8]+{-[100-(100-x)]2+[100-(100-x)]}=(-x2+x-1)+(-x2+x)=-x2+52x-1=-(x-26)2+675. ∴投入旧产品26万元,新产品74万元时,每年可获得最大的利润,最大利润是675万元. (3)因为P(x)在(0,30]上是增函数,所以在100万元的生产准备金中除用于新产品开发外,剩余的20万元全部投入即可得到最大利润.于是,头2年的利润是W1=2×P(20)=14(万元);后3年的利润是W2=3×[P(26)+Q(74)]=3×675=2 025(万元),故5年的总利润是W=W1+W2=2 039万元,又2 039×70%=1 427.3>1 275,所以从新旧产品的五年总利润中拿出70%来,能够还清对银行的欠款.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 2018 年高 学人 必修 3.2 函数 模型 应用 举例 课堂 导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2017-2018学年高中数学人教A版必修1学案:3.2.2函数模型应用举例课堂导学案-.doc
链接地址:https://www.zixin.com.cn/doc/4407639.html
链接地址:https://www.zixin.com.cn/doc/4407639.html