人教版七年级上册数学一元一次方程应用题及答案.docx
《人教版七年级上册数学一元一次方程应用题及答案.docx》由会员分享,可在线阅读,更多相关《人教版七年级上册数学一元一次方程应用题及答案.docx(16页珍藏版)》请在咨信网上搜索。
. . 一元一次方程应用题 知能点 1:市场经济、打折销售问题 商品利润 (1)商品利润=商品售价-商品成本价 (2)商品利润率= ×100% 商品成本价 (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原价的百分之几十出售,如商品打 8 折出售,即按原价的 80%出售. 1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价 60 元一双, 八折出售后商家获利润率为 40%,问这种皮鞋标价是多少元?优惠价是多少元? 2. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这 种服装每件的进价是多少? 3.一家商店将一种自行车按进价提高 45%后标价,又以八折优惠卖出,结果每辆仍获利 50 元,这 种自行车每辆的进价是多少元?若设这种自行车每辆的进价是 x 元,那么所列方程为( ) A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50 D.80%×(1-45%)x - x = 50 C. x-80%×(1+45%)x = 50 4.某商品的进价为 800 元,出售时标价为 1200 元,后来由于该商品积压,商店准备打折出售,但 要保持利润率不低于 5%,则至多打几折. 5.一家商店将某种型号的彩电先按原售价提高 40%,然后在广告中写上“大酬宾,八折优惠”.经 顾客投拆后,拆法部门按已得非法收入的 10 倍处以每台 2700 元的罚款,求每台彩电的原售价. 知能点 2: 方案选择问题 6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为 1000 元,•经粗加工后销售, 每吨利润可达 4500 元,经精加工后销售,每吨利润涨至 7500 元,当地一家公司收购这种蔬菜 140 吨,该公司的加工生产能力是: 如果对蔬菜进行粗加工,每天可加工 16 吨,如果进行精加工, 每天可加工 6 吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15 天将这批 蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: . zyzl . . . . 方案一:将蔬菜全部进行粗加工. 方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好 15 天完成. 你认为哪种方案获利最多?为什么? 7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴 50•元月基础费,然后每通话 1 分钟,再付电话费 0.2 元;“神州行”不缴月基础费,每通话1•分钟需付话费 0.4 元(这里均指 市内电话).若一个月内通话 x 分钟,两种通话方式的费用分别为 y 元和y 元. 1 2 (1)写出 y ,y 与 x 之间的函数关系式(即等式). 2 1 (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费 120 元,则应选择哪一种通话方式较合算? 8.某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦时,则超过部分 按基本电价的 70%收费。(1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a. (2)若该用户九月份的平均电费为 0.36 元,则九月份共用电多少千瓦时?•应交电费是多少元? 9.某家电商场计划用 9 万元从生产厂家购进 50 台电视机.已知该厂家生产 3•种不同型号的电视 机,出厂价分别为 A 种每台 1500 元,B 种每台 2100 元,C 种每台 2500 元. (1)若家电商场同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的 进货方案. (2)若商场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利 200 元,•销售一 台 C 种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多, 你选择哪种方案? 10.小刚为书房买灯。现有两种灯可供选购,其中一种是 9 瓦的节能灯,售价为 49 元/盏,另一种 . zyzl . . . . 是 40 瓦的白炽灯,售价为 18 元/盏。假设两种灯的照明效果一样,使用寿命都可以达到 2800 小时。 已知小刚家所在地的电价是每千瓦时 0.5 元。 (1).设照明时间是 x 小时,请用含 x 的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。 (费用=灯的售价+电费) (2).小刚想在这种灯中选购两盏。假定照明时间是 3000 小时,使用寿命都是 2800 小时。请你 设计一种费用最低的选灯照明方案,并说明理由。 知能点 3 储蓄、储蓄利息问题 (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入 银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 (2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) 每个期数内的利息 (3)利润= ´100%, 本金 11. 某同学把 250 元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7 元,求银行 半年期的年利率是多少?(不计利息税) 12. 为了准备 6 年后小明上大学的学费 20000 元,他的父亲现在就参加了教育储蓄,下面有三种 教育储蓄方式: 一年 2.25 (1)直接存入一个 6 年期; 三年 2.70 (2)先存入一个三年期,3 年后将本息和自动转存一个三年期; 六年 2.88 (3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育 储蓄方式开始存入的本金比较少? 13.小刚的爸爸前年买了某公司的二年期债券 4500 元,今年到期,扣除利息税后,共得本利和约 4700 元,问这种债券的年利率是多少(精确到 0.01%). 14.(北京海淀区)白云商场购进某种商品的进价是每件8 元,销售价是每件 10 元(销售价与进价 . zyzl . . . . 的差价 2 元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低 x%出 售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的 90%,则 x 应等于( ). A.1 B.1.8 C.2 D.10 15.用若干元人民币购买了一种年利率为 10% 的一年期债券,到期后他取出本金的一半用作购物, 剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和 1320 元。问张 叔叔当初购买这咱债券花了多少元? 知能点 4:工程问题 工作量=工作效率×工作时间 工作时间=工作量÷工作效率 工作效率=工作量÷工作时间 完成某项任务的各工作量的和=总工作量=1 16. 一件工作,甲独作 10 天完成,乙独作 8 天完成,两人合作几天完成? 17. 一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作 3 天后,甲有其他 任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管 6 小时可注满水池;单独开乙 管 8 小时可注满水池,单独开丙管 9 小时可将满池水排空,若先将甲、乙管同时开放2 小时,然后 打开丙管,问打开丙管后几小时可注满水池? 19.一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4 小时,甲先做 30 分钟, 然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作? 20.某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个.在这 16 名工人中,一部 分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利 16 元,每加工一 个乙种零件可获利 24 元.若此车间一共获利 1440 元,•求这一天有几个工人加工甲种零件. 21.一项工程甲单独做需要 10 天,乙需要 12 天,丙单独做需要 15 天,甲、丙先做 3 天后,甲因事 . zyzl . . . . 离去,乙参与工作,问还需几天完成? 知能点 5:若干应用问题等量关系的规律 (1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注 意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我 们正确地列出代数式或方程式。 (2)等积变形问题 增长量=原有量×增长率 现在量=原有量+增长量 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. p V=底面积×高=S·h= rh ①圆柱体的体积公式 ②长方体的体积 2 V=长×宽×高=abc 22.某粮库装粮食,第一个仓库是第二个仓库存粮的3 倍,如果从第一个仓库中取出 20 吨放入第二 5 个仓库中,第二个仓库中的粮食是第一个中的 。问每个仓库各有多少粮食? 7 23.一个装满水的内部长、宽、高分别为 300 毫米,300 毫米和 80•毫米的长方体铁盒中的水,倒入 p 一个内径为 200 毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到 0.1 毫米, ≈3.14). 24.长方体甲的长、宽、高分别为 260mm,150mm,325mm,长方体乙的底面积为 130×130mm ,又知 2 甲的体积是乙的体积的 2.5 倍,求乙的高? 知能点 6:行程问题 基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题 (2)追及问题 快行距-慢行距=原距 快行距+慢行距=原距 (3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 25. 甲、乙两站相距 480 公里,一列慢车从甲站开出,每小时行 90 公里,一列快车从乙站开出, . zyzl . . . . 每小时行 140 公里。 (1)慢车先开出 1 小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距 600 公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距 600 公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 26. 甲乙两人在同一道路上从相距 5 千米的 A、B 两地同向而行,甲的速度为 5 千米/小时,乙的 速度为 3 千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙, 依次反复,直至甲追上乙为止,已知狗的速度为 15 千米/小时,求此过程中,狗跑的总路程是多少? 27. 某船从 A 地顺流而下到达 B 地,然后逆流返回,到达 A、B 两地之间的 C 地,一共航行了 7 小时,已知此船在静水中的速度为 8 千米/时,水流速度为 2 千米/时。A、C 两地之间的路程为 10 千米,求 A、B 两地之间的路程。 28.有一火车以每分钟 600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多 5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短 50 米,试求各铁桥的长. 29.已知甲、乙两地相距 120 千米,乙的速度比甲每小时快 1 千米,甲先从A地出发 2 小时后,乙 从B地出发,与甲相向而行经过 10 小时后相遇,求甲乙的速度? . zyzl . . . . 30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18 米/分的速度从 队头至队尾又返回,已知队伍的行进速度为 14 米/分。问:若已知队长 320 米,则通讯员几分钟 返回?若已知通讯员用了 25 分钟,则队长为多少米? 31.一架飞机在两个城市之间飞行,风速为 24 千米/小时,顺风飞行需要 2 小时 50 分,逆风飞行 需要 3 小时,求两个城市之间的飞行路程? 32.一轮船在甲、乙两码头之间航行,顺水航行需要4 小时,逆水航行需要 5 小时,水流的速度为 2 千米/时,求甲、乙两码头之间的距离。 知能点 7:数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为 a,十位数字是 b,个位数字为 c(其 中 a、b、c 均为整数,且 1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。然 后抓住数字间或新数、原数之间的关系找等量关系列方程. (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用 2n 表示, 连续的偶数用 2n+2 或 2n—2 表示;奇数用 2n+1 或 2n—1 表示。 33. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十 位上的数的 3 倍,求这个三位数. 34. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的 两位数比原两位数大 36,求原来的两位数 注意:虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不 止这几类问题。因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各 种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元, 寻找等量关系,从而列出方程,解出方程,使问题得解 答案 . zyzl . . . . 1. [分析]通过列表分析已知条件,找到等量关系式 进价 折扣率 8折 标价 X元 优惠价 80%X 利润率 40% 60 元 等量关系:商品利润率=商品利润/商品进价 80%x - 60 40 解:设标价是 X 元, = 60 100 80 = ´105 = 84(元), 解之:x=105 优惠价为80%x 100 2. [分析]探究题目中隐含的条件是关键,可直接设出成本为 X 元 进价 X元 折扣率 8折 标价 优惠价 80%(1+40%)X 利润 (1+40%)X 元 15元 等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15 解:设进价为 X 元,80%X(1+40%)—X=15,X=125 答:进价是 125 元。 3.B 1200x -800 4.解:设至多打 x 折,根据题意有 答:至多打 7 折出售. ×100%=5% 解得 x=0.7=70% 800 5.解:设每台彩电的原售价为 x 元,根据题意,有 答:每台彩电的原售价为 2250 元. 10[x(1+40%)×80%-x]=2700,x=2250 6.解:方案一:获利 140×4500=630000(元) 方案二:获利 15×6×7500+(140-15×6)×1000=725000(元) 方案三:设精加工 x 吨,则粗加工(140-x)吨. x 140- x + 依题意得 =15 解得 x=60 6 16 获利 60×7500+(140-60)×4500=810000(元) 因为第三种获利最多,所以应选择方案三. 7.解:(1)y =0.2x+50,y =0.4x. 1 2 (2)由 y =y 得 0.2x+50=0.4x,解得 x=250. 2 1 即当一个月内通话 250 分钟时,两种通话方式的费用相同. (3)由 0.2x+50=120,解得 x=350 由 0.4x+50=120,得 x=300 故第一种通话方式比较合算. 因为 350>300 8.解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得 a=60 (2)设九月份共用电 x 千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得 x=90 . zyzl . . . . 所以 0.36×90=32.40(元) 答:九月份共用电 90 千瓦时,应交电费 32.40 元. 9.解:按购 A,B 两种,B,C 两种,A,C 两种电视机这三种方案分别计算, 设购 A 种电视机x 台,则B 种电视机y 台. (1)①当选购 A,B 两种电视机时,B 种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 ②当选购 A,C 两种电视机时,C 种电视机购(50-x)台, 可得方程 1500x+2500(50-x)=90000 3x+5(50-x)=1800 ③当购 B,C 两种电视机时,C 种电视机为(50-y)台. 可得方程 2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 即 5x+7(50-x)=300 2x=50 x=25 50-x=25 x=35 50-x=15 由此可选择两种方案:一是购 A,B 两种电视机 25 台;二是购 A 种电视机 35 台,C 种电视机 15 台. (2)若选择(1)中的方案①,可获利 若选择(1)中的方案②,可获利 150×25+250×15=8750(元) 150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案. 10.答案:0.005x+49 2000 11.[分析]等量关系:本息和=本金×(1+利率) 解:设半年期的实际利率为 X,依题意得方程 250(1+X)=252.7, 解得 X=0.0108 所以年利率为 0.0108×2=0.0216 答:银行的年利率是 21.6% 12. [分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少, 再进行比较。 解:(1)设存入一个 6 年的本金是 X 元,依题意得方程 X(1+6×2.88%)=20000,解得 X=17053 (2)设存入两个三年期开始的本金为 Y 元,Y(1+2.7%×3)(1+2.7%×3)=20000,X=17115 (3)设存入一年期本金为 Z 元 ,Z(1+2.25%)6=20000,Z=17894 所以存入一个 6 年期的本金最少。 13.解:设这种债券的年利率是 x,根据题意有 4500+4500×2×x×(1-20%)=4700, 答:这种债券的年利率为 0.03. 解得 x=0.03 14.C [点拨:根据题意列方程,得(10-8)×90%=10(1-x%)-8,解得 x=2,故选 C] 15. 22000 元 1 16. [分析]甲独作 10 天完成,说明的他的工作效率是 , 乙的工作效率是 , 1 10 8 等量关系是:甲乙合作的效率×合作的时间=1 1 1 40 9 + ) x = 1 解得x = 解:设合作 X 天完成, 依题意得方程( 10 8 . zyzl . . . . 40 9 答:两人合作 天完成 17. [分析]设工程总量为单位 1,等量关系为:甲完成工作量+乙完成工作量=工作总量。 解:设乙还需 x 天完成全部工程,设工作总量为单位 1,由题意得, 1 1 x 33 5 3 5 ( + )´3 + = 1 解之得x = = 6 15 12 12 答:乙还需6 3 天才能完成全部工程。 5 18. [分析]等量关系为:甲注水量+乙注水量-丙排水量=1。 解:设打开丙管后 x 小时可注满水池, 1 1 x 30 13 4 ( + )(x + 2) - = 1 解这个方程得x = = 2 由题意得, 6 8 9 13 4 答:打开丙管后2 小时可注满水池。 13 19.解:设甲、乙一起做还需 x 小时才能完成工作. 1 1 1 1 根据题意,得 × +( + )x=1 11 5 11 5 解这个方程,得 x= =2 小时12分 6 2 6 4 答:甲、乙一起做还需 2 小时 12 分才能完成工作. 20.解:设这一天有 x 名工人加工甲种零件,则这天加工甲种零件有 5x 个,乙种零件有 4(16-x) 个. 根据题意,得 16×5x+24×4(16-x)=1440 解得 x=6 答:这一天有 6 名工人加工甲种零件. 21. 设还需 x 天。 1 1 1 1 1 1 1 10 3 æ ö æ ç è ö ÷ ø ç + ÷´ 3+ + x =1 或 ´3+ x + (3+ x) =1 解得 x = 10 12 15 10 15 12 15 è ø 22.设第二个仓库存粮 吨,则第一个仓库存粮3 吨,根据题意得 x x 5 7 (3x - 20) = x + 20 解得x = 30 3x = 3´30 = 90 200 23.解:设圆柱形水桶的高为 x 毫米,依题意,得 p ·( )2x=300×300×80 x≈229.3 2 答:圆柱形水桶的高约为 229.3 毫米. 260´150´325 = 2.5´130´130´ x 解得x = 300 24.设乙的高为 mm,根据题意得 x 25. (1)分析:相遇问题,画图表示为: 等量关系是:慢车走的路程+快车走的路程=480 公里。 解:设快车开出 x 小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 16 x = 1 , 23 116 甲 乙 答:快车开出 23 小时两车相遇 600 分析:相背而行,画图表示为: 等量关系是:两车所走的路程和+480 公里=600 公里。 甲 乙 . zyzl . . . . 解:设 x 小时后两车相距 600 公里, 12 23 由题意得,(140+90)x+480=600 解这个方程,230x=120 ∴ x= 12 答: 小时后两车相距 600 公里。 23 (3)分析:等量关系为:快车所走路程-慢车所走路程+480 公里=600 公里。 解:设 x 小时后两车相距 600 公里,由题意得,(140-90)x+480=600 答:2.4 小时后两车相距 600 公里。 50x=120 ∴ x=2.4 分析:追及问题,画图表示为: 等量关系为:快车的路程=慢车走的路程+480 公里。 甲 解:设 x 小时后快车追上慢车。 乙 由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6 小时后快车追上慢车。 分析:追及问题,等量关系为:快车的路程=慢车走的路程+480 公里。 解:设快车开出 x 小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 ∴ x=11.4 答:快车开出 11.4 小时后追上慢车。 26. [分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。 狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间 解:设甲用 X 小时追上乙,根据题意列方程 5X=3X+5 解得 X=2.5,狗的总路程:15×2.5=37.5 答:狗的总路程是 37.5 千米。 27. [分析]这属于行船问题,这类问题中要弄清: (1)顺水速度=船在静水中的速度+水流速度; (2)逆水速度=船在静水中的速度-水流速度。相等关系为:顺流航行的时间+逆流航行的时 间=7 小时。 解:设 A、B 两码头之间的航程为 x 千米,则 B、C 间的航程为(x-10)千米, x -10 x + = 7 解这个方程得x = 32.5 由题意得, 2 + 8 8 - 2 答:A、B 两地之间的路程为 32.5 千米。 28.解:设第一铁桥的长为 x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为 x 2x -50 600 分.过完第二铁桥所需的时间为 600 分.依题意,可列出方程 x 5 2x -50 + = 解方程 x+50=2x-50 得 x=100 600 60 600 ∴2x-50=2×100-50=150 答:第一铁桥长 100 米,第二铁桥长 150 米. 2x +10(x + x +1) = 120 x = 5 x +1 = 6 29.设甲的速度为 x 千米/小时。 则 320 320 + = x 30.(1)设通讯员 x 分钟返回.则 x-90 18 -14 18 +14 . zyzl . . . . x x + = 25 18 +14 18 -14 (2)设队长为 x 米。则 800 x = 9 31.设两个城市之间的飞行路程为 x 千米。则 x x 6x x - = 48 17 3 - 24 = + 24 x = 2448 50 60 3 2 x x = + 4 。 x=80 4 5 32.设甲、乙两码头之间的距离为 x 千米。则 33.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为 x,则百位上的数为 x+7, 个位上的数是 3x,等量关系为三个数位上的数字和为 17。 解:设这个三位数十位上的数为 X,则百位上的数为 x+7,个位上的数是 3x x+x+7+3x=17 解得 x=2 x+7=9,3x=6 答:这个三位数是 926 34. 等量关系:原两位数+36=对调后新两位数 解:设十位上的数字 X,则个位上的数是 2X, 10×2X+X=(10X+2X)+36 解得 X=4,2X=8,答:原来的两位数是 48。 . zyzl . . . . 解:设 x 小时后两车相距 600 公里, 12 23 由题意得,(140+90)x+480=600 解这个方程,230x=120 ∴ x= 12 答: 小时后两车相距 600 公里。 23 (3)分析:等量关系为:快车所走路程-慢车所走路程+480 公里=600 公里。 解:设 x 小时后两车相距 600 公里,由题意得,(140-90)x+480=600 答:2.4 小时后两车相距 600 公里。 50x=120 ∴ x=2.4 分析:追及问题,画图表示为: 等量关系为:快车的路程=慢车走的路程+480 公里。 甲 解:设 x 小时后快车追上慢车。 乙 由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6 小时后快车追上慢车。 分析:追及问题,等量关系为:快车的路程=慢车走的路程+480 公里。 解:设快车开出 x 小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 ∴ x=11.4 答:快车开出 11.4 小时后追上慢车。 26. [分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。 狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间 解:设甲用 X 小时追上乙,根据题意列方程 5X=3X+5 解得 X=2.5,狗的总路程:15×2.5=37.5 答:狗的总路程是 37.5 千米。 27. [分析]这属于行船问题,这类问题中要弄清: (1)顺水速度=船在静水中的速度+水流速度; (2)逆水速度=船在静水中的速度-水流速度。相等关系为:顺流航行的时间+逆流航行的时 间=7 小时。 解:设 A、B 两码头之间的航程为 x 千米,则 B、C 间的航程为(x-10)千米, x -10 x + = 7 解这个方程得x = 32.5 由题意得, 2 + 8 8 - 2 答:A、B 两地之间的路程为 32.5 千米。 28.解:设第一铁桥的长为 x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为 x 2x -50 600 分.过完第二铁桥所需的时间为 600 分.依题意,可列出方程 x 5 2x -50 + = 解方程 x+50=2x-50 得 x=100 600 60 600 ∴2x-50=2×100-50=150 答:第一铁桥长 100 米,第二铁桥长 150 米. 2x +10(x + x +1) = 120 x = 5 x +1 = 6 29.设甲的速度为 x 千米/小时。 则 320 320 + = x 30.(1)设通讯员 x 分钟返回.则 x-90 18 -14 18 +14 . zyzl . . . . x x + = 25 18 +14 18 -14 (2)设队长为 x 米。则 800 x = 9 31.设两个城市之间的飞行路程为 x 千米。则 x x 6x x - = 48 17 3 - 24 = + 24 x = 2448 50 60 3 2 x x = + 4 。 x=80 4 5 32.设甲、乙两码头之间的距离为 x 千米。则 33.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为 x,则百位上的数为 x+7, 个位上的数是 3x,等量关系为三个数位上的数字和为 17。 解:设这个三位数十位上的数为 X,则百位上的数为 x+7,个位上的数是 3x x+x+7+3x=17 解得 x=2 x+7=9,3x=6 答:这个三位数是 926 34. 等量关系:原两位数+36=对调后新两位数 解:设十位上的数字 X,则个位上的数是 2X, 10×2X+X=(10X+2X)+36 解得 X=4,2X=8,答:原来的两位数是 48。 . zyzl . . . . 解:设 x 小时后两车相距 600 公里, 12 23 由题意得,(140+90)x+480=600 解这个方程,230x=120 ∴ x= 12 答: 小时后两车相距 600 公里。 23 (3)分析:等量关系为:快车所走路程-慢车所走路程+480 公里=600 公里。 解:设 x 小时后两车相距 600 公里,由题意得,(140-90)x+480=600 答:2.4 小时后两车相距 600 公里。 50x=120 ∴ x=2.4 分析:追及问题,画图表示为: 等量关系为:快车的路程=慢车走的路程+480 公里。 甲 解:设 x 小时后快车追上慢车。 乙 由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6 小时后快车追上慢车。 分析:追及问题,等量关系为:快车的路程=慢车走的路程+480 公里。 解:设快车开出 x 小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 ∴ x=11.4 答:快车开出 11.4 小时后追上慢车。 26. [分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。 狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间 解:设甲用 X 小时追上乙,根据题意列方程 5X=3X+5 解得 X=2.5,狗的总路程:15×2.5=37.5 答:狗的总路程是 37.5 千米。 27. [分析]这属于行船问题,这类问题中要弄清: (1)顺水速度=船在静水中的速度+水流速度; (2)逆水速度=船在静水中的速度-水流速度。相等关系为:顺流航行的时间+逆流航行的时 间=7 小时。 解:设 A、B 两码头之间的航程为 x 千米,则 B、C 间的航程为(x-10)千米, x -10 x + = 7 解这个方程得x = 32.5 由题意得, 2 + 8 8 - 2 答:A、B 两地之间的路程为 32.5 千米。 28.解:设第一铁桥的长为 x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为 x 2x -50 600 分.过完第二铁桥所需的时间为 600 分.依题意,可列出方程 x 5 2x -50 + = 解方程 x+50=2x-50 得 x=100 600 60 600 ∴2x-50=2×100-50=150 答:第一铁桥长 100 米,第二铁桥长 150 米. 2x +10(x + x +1) = 120 x = 5 x +1 = 6 29.设甲的速度为 x 千米/小时。 则 320 320 + = x 30.(1)设通讯员 x 分钟返回.则 x-90 18 -14 18 +14 . zyzl . . . . x x + = 25 18 +14 18 -14 (2)设队长为 x 米。则 800 x = 9 31.设两个城市之间的飞行路程为 x 千米。则 x x 6x x - = 48 17 3 - 24 = + 24 x = 2448 50 60 3 2 x x = + 4 。 x=80 4 5 32.设甲、乙两码头之间的距离为 x 千米。则 33.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为 x,则百位上的数为 x+7, 个位上的数是 3x,等量关系为三个数位上的数字和为 17。 解:设这个三位数十位上的数为 X,则百位上的数为 x+7,个位上的数是 3x x+x+7+3x=17 解得 x=2 x+7=9,3x=6 答:这个三位数是 926 34. 等量关系:原两位数+36=对调后新两位数 解:设十位上的数字 X,则个位上的数是 2X, 10×2X+X=(10X+2X)+36 解得 X=4,2X=8,答:原来的两位数是 48。 . zyzl . .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 上册 数学 一元一次方程 应用题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文