2022年普通高等学校招生全国统一考试数学(文)试题(安徽卷详解).docx
《2022年普通高等学校招生全国统一考试数学(文)试题(安徽卷详解).docx》由会员分享,可在线阅读,更多相关《2022年普通高等学校招生全国统一考试数学(文)试题(安徽卷详解).docx(7页珍藏版)》请在咨信网上搜索。
2022·安徽卷(文科数学) 1. [2022·安徽卷] 设i是虚数单位,复数i3+=( ) A.-iB.iC.-1D.1 1.D[解析]i3+=-i+=1. 2. [2022·安徽卷] 命题“∀x∈R,|x|+x2≥0”的否认是( ) A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0 C.∃x0∈R,|x0|+x<0 D.∃x0∈R,|x0|+x≥0 2.C[解析]易知该命题的否认为“∃x0∈R,|x0|+x<0”. 3. [2022·安徽卷] 抛物线y=x2的准线方程是( ) A.y=-1B.y=-2 C.x=-1D.x=-2 3.A[解析]因为抛物线y=x2的标准方程为x2=4y,所以其准线方程为y=-1. 4. [2022·安徽卷] 如图11所示,程序框图(算法流程图)的输出结果是( ) 图11 A.34B.55 C.78D.89 4.B[解析]由程序框图可知,列出每次循环过后变量的取值情况如下: 第一次循环,x=1,y=1,z=2; 第二次循环,x=1,y=2,z=3; 第三次循环,x=2,y=3,z=5; 第四次循环,x=3,y=5,z=8; 第五次循环,x=5,y=8,z=13; 第六次循环,x=8,y=13,z=21; 第七次循环,x=13,y=21,z=34; 第八次循环,x=21,y=34,z=55,不满足条件,跳出循环. 5. [2022·安徽卷] 设a=log37,b=21.1,c=0.83.1,那么( ) A.b<a<c B.c<a<b C.c<b<a D.a<c<b 5.B[解析]因为2>a=log37>1,b=21.1>2,c=0.83.1<1,所以c<a<b. 6. [2022·安徽卷] 过点P(-,-1)的直线l与圆x2+y2=1有公共点,那么直线l的倾斜角的取值范围是( ) A.B. C.D. 6.D[解析]易知直线l的斜率存在,所以可设l:y+1=k(x+),即kx-y+k-1=0.因为直线l圆x2+y2=1有公共点,所以圆心(0,0)到直线l的距离≤1,即k2-k≤0,解得0≤k≤,故直线l的倾斜角的取值范围是. 7. [2022·安徽卷] 假设将函数f(x)=sin2x+cos2x的图像向右平移φ个单位,所得图像关于y轴对称,那么φ的最小正值是( ) A.B. C.D. 7.C[解析]方法一:将f(x)=sin的图像向右平移φ个单位,得到y=sin的图像,由所得图像关于y轴对称,可知sin=±1,即sin=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=. 8. [2022·安徽卷] 一个多面体的三视图如图12所示,那么该多面体的体积是( ) 图12 A.B.C.6D.7 8.A[解析]如下列图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的局部,其体积V=8-2111=. 9. [2022·安徽卷] 假设函数f(x)=|x+1|+|2x+a|的最小值为3,那么实数a的值为( ) A.5或8B.-1或5 C.-1或-4D.-4或8 9.D[解析]当a≥2时, f(x)= 由图可知,当x=-时,fmin(x)=f=-1=3,可得a=8. 当a<2时,f(x) 由图可知,当x=-时,fmin(x)=f=+1=3,可得a=-4.综上可知,a的值为-4或8. 10. [2022·安徽卷] 设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成,假设x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,那么a与b的夹角为( ) A.B.C.D.0 10.B[解析]令S=x1·y1+x2·y2+x3·y3+x4·y4,那么可能的取值有3种情况:S1=2+2,S2=++2a·b,S3=4a·b.又因为|b|=2|a|.所以S1-S3=2a2+2b2-4a·b=2>0,S1-S2=a2+b2-2a·b=(a-b)2>0,S2-S3=(a-b)2>0,所以S3<S2<S1,故Smin=S3=4a·b.设a,b的夹角为θ,那么Smin=4a·b=8|a|2cosθ=4|a|2,所以cosθ=.又θ∈[0,π],所以θ=. 11. [2022·安徽卷] +log3+log3=________. 11.[解析]原式=+log3==. 12. [2022·安徽卷] 如图13,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;….依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,那么a7=________. 图13 12.[解析]在等腰直角三角形ABC中,斜边BC=2,所以AB=AC=a1=2,由题易知A1A2=a3=AB=1,…,A6A7=a7=·AB=2=. 13. [2022·安徽卷] 不等式组表示的平面区域的面积为________. 13.4[解析]不等式组所表示的平面区域如图中阴影局部所示,S△ABD=S△ABD+S△BCD=2(2+2)=4. 14. [2022·安徽卷] 假设函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=那么f+f=______. 14.[解析]由题易知f+f=f+f=-f-f=-+sin=. 15. [2022·安徽卷] 假设直线l与曲线C满足以下两个条件: (i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧.那么称直线l在点P处“切过〞曲线C. ①直线l:y=0在点P(0,0)处“切过〞曲线C:y=x3; ②直线l:x=-1在点P(-1,0)处“切过〞曲线C:y=(x+1)2; ③直线l:y=x在点P(0,0)处“切过〞曲线C:y=sinx; ④直线l:y=x在点P(0,0)处“切过〞曲线C:y=tanx; ⑤直线l:y=x-1在点P(1,0)处“切过〞曲线C:y=lnx. 15.①③④[解析]对于①,因为y′=3x2,y′x=0=0,所以l:y=0是曲线C:y=x3在点P(0,0)处的切线,画图可知曲线C在点P附近位于直线l的两侧,①正确; 对于②,因为y′=2(x+1),y′x=-1=0,所以l:x=-1不是曲线C:y=(x+1)2在点P(-1,0)处的切线,②错误; 对于③,y′=cosx,y′x=0=1,所以曲线C在点P(0,0)处的切线为l:y=x,画图可知曲线C在点P附近位于直线l的两侧,③正确; 对于④,y′=,y′x=0=1,所以曲线C在点P(0,0)处的切线为l:y=x,画图可知曲线C在点P附近位于直线l的两侧,④正确; 对于⑤,y′=,y′x=1=1,所以曲线C在点P(1,0)处切线为l:y=x-1,又由h(x)=x-1-lnx(x>0)可得h′(x)=1-=,所以hmin(x)=h(1)=0,故x-1≥lnx,所以曲线C在点P附近位于直线l的下侧,⑤错误. 16. [2022·安徽卷]设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,△ABC的面积为.求cosA与a的值. 16.解:由三角形面积公式,得 31·sinA=,故sinA=. 因为sin2A+cos2A=1, 所以cosA=±=±=±. ①当cosA=时,由余弦定理得a2=b2+c2-2bccosA=32+12-213=8, 所以a=2. ②当cosA=-时,由余弦定理得a2=b2+c2-2bccosA=32+12-213=12,所以a=2. 17. [2022·安徽卷] 某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (1)应收集多少位女生的样本数据 (2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图14所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率. 图14 (3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关〞. P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 附:K2= 17.解: (1)300=90,所以应收集90位女生的样本数据. (2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75. (3)由(2)知,300位学生中有3000.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下: 男生 女生 总计 每周平均体育运动时间不超过4小时 45 30 75 每周平均体育运动时间超过4小时 165 60 225 总计 210 90 300 结合列联表可算得K2==≈4.762>3.841. 所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关〞. 18. [2022·安徽卷] 数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*. (1)证明:数列是等差数列; (2)设bn=3n·,求数列{bn}的前n项和Sn. 18.解: (1)证明:由可得=+1,即-=1,所以是以=1为首项,1为公差的等差数列. (2)由(1)得=1+(n-1)·1=n,所以an=n2, 从而可得bn=n·3n. Sn=131+232+…+(n-1)3n-1+n3n,① 3Sn=132+233+…+(n-1)3n+n3n+1.② ①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=, 所以Sn=. 19. [2022·安徽卷] 如图15所示,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH. 图15 (1)证明:GH∥EF; (2)假设EB=2,求四边形GEFH的面积. 19.解: (1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC. 同理可证EF∥BC,因此GH∥EF. (2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK. 因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在平面ABCD内,所以PO⊥平面ABCD. 又因为平面GEFH⊥平面ABCD, 且PO⊄平面GEFH,所以PO∥平面GEFH. 因为平面PBD∩平面GEFH=GK, 所以PO∥GK,所以GK⊥平面ABCD. 又EF⊂平面ABCD,所以GK⊥EF, 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4, 从而KB=DB=OB,即K是OB的中点. 再由PO∥GK得GK=PO, 所以G是PB的中点,且GH=BC=4. 由可得OB=4,PO===6, 所以GK=3,故四边形GEFH的面积S=·GK=3=18. 20. [2022·安徽卷] 设函数f(x)=1+(1+a)x-x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性; (2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值. 20.解: (1)f(x)的定义域为(-∞,+∞), f′(x)=1+a-2x-3x2. 令f′(x)=0,得x1=, x2=,且x1<x2, 所以f′(x)=-3(x-x1)(x-x2). 当x<x1或x>x2时,f′(x)<0; 当x1<x<x2时,f′(x)>0. 故f(x)在和内单调递减, 在内单调递增. (2)因为a>0,所以x1<0,x2>0, ①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值. ②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减, 因此f(x)在x=x2=处取得最大值.又f(0)=1,f(1)=a, 所以当0<a<1时,f(x)在x=1处取得最小值; 当a=1时,f(x)在x=0和x=1处同时取得最小值; 当1<a<4时,f(x)在x=0处取得最小值. 21. [2022·安徽卷] 设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|. (1)假设|AB|=4,△ABF2的周长为16,求|AF2|; (2)假设cos∠AF2B=,求椭圆E的离心率. 21.解:(1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1. 因为△ABF2的周长为16,所以由椭圆定义可得4a=16,所以|AF1|+|AF2|=2a=8. 故|AF2|=2a-|AF1|=8-3=5. (2)设|F1B|=k,那么k>0且|AF1|=3k,|AB|=4k.由椭圆定义可得 |AF2|=2a-3k,|BF2|=2a-k. 在△ABF2中,由余弦定理可得 |AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2·cos∠AF2B, 即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)· (2a-k), 化简可得(a+k)(a-3k)=0,而a+k>0,故a=3k, 于是有|AF2|=3k=|AF1|,|BF2|=5k. 因此|BF2|2=|AF2|2+|AB|2,可得F1A⊥F2A. 故△AF1F2为等腰直角三角形, 从而c=a,所以椭圆E的离心率e==.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 普通高等学校 招生 全国 统一 考试 数学 试题 安徽 详解
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文