2022高考数学一轮复习课后限时集训67随机事件的概率理北师大版.doc
《2022高考数学一轮复习课后限时集训67随机事件的概率理北师大版.doc》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习课后限时集训67随机事件的概率理北师大版.doc(7页珍藏版)》请在咨信网上搜索。
课后限时集训67 随机事件的概率 建议用时:45分钟 一、选择题 1.设事件A,B,P(A)=,P(B)=,P(A+B)=,那么A,B之间的关系一定为( ) A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件 B [因为P(A)+P(B)=+==P(A+B),所以A,B之间的关系一定为互斥事件.应选B.] 2.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,那么甲不输的概率为( ) A. B. C. D. A [事件“甲不输〞包含“和棋〞和“甲获胜〞这两个互斥事件,所以甲不输的概率为+=.] 3.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,那么摸出黑球的概率为( ) A.0.45 B.0.67 C.0.64 D.0.32 D [从中摸出一球,为红球的概率为=0.45. 故摸出黑球的概率为1-0.45-0.23=0.32.] 4.以下说法正确的选项是( ) A.甲、乙二人比赛,甲胜的概率为,那么比赛5场,甲胜3场 B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,那么第10个病人一定治愈 C.随机试验的频率与概率相等 D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90% D [由概率的意义知D正确.] 5.将一枚硬币连续抛掷n次,假设使得至少有一次正面向上的概率不小于,那么n的最小值为( ) A.4 B.5 C.6 D.7 A [由得1-n≥, 解得n≥4,应选A.] 二、填空题 6.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,假设在该地区任选一人,那么能为病人输血的概率为________. 65% [因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%.] 7.(2022·济南模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且P(A)=0.65,P(B)=0.2,P(C)=0.1,那么事件“抽到的产品不是一等品〞的概率为________. 0.35 [∵事件A={抽到一等品},且P(A)=0.65, ∴事件“抽到的产品不是一等品〞的概率为p=1-P(A)=1-0.65=0.35.] 8.某城市2022年的空气质量状况如下表所示: 污染指数T 30 60 100 110 130 140 概率P 其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,那么该城市2022年空气质量到达良或优的概率为________. [由题意可知2022年空气质量到达良或优的概率为P=++=.] 三、解答题 9.某超市随机选取1 000位顾客,记录了他们购置甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√〞表示购置,“×〞表示未购置. 商品 顾客人数 甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98 × √ × × (1)估计顾客同时购置乙和丙的概率; (2)估计顾客在甲、乙、丙、丁中同时购置3种商品的概率; (3)如果顾客购置了甲,那么该顾客同时购置乙、丙、丁中哪种商品的可能性最大? [解] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购置了乙和丙,所以顾客同时购置乙和丙的概率可以估计为=0.2. (2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购置了甲、丙、丁,另有200位顾客同时购置了甲、乙、丙,其他顾客最多购置了2种商品,所以顾客在甲、乙、丙、丁中同时购置3种商品的概率可以估计为=0.3. (3)与(1)同理,可得: 顾客同时购置甲和乙的概率可以估计为=0.2, 顾客同时购置甲和丙的概率可以估计为=0.6, 顾客同时购置甲和丁的概率可以估计为=0.1. 所以,如果顾客购置了甲,那么该顾客同时购置丙的可能性最大. 10.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下: 所用时 间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L1 的人数 6 12 18 12 12 选择L2 的人数 0 4 16 16 4 (1)试估计40分钟内不能赶到火车站的概率; (2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率; (3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径. [解] (1)由共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), ∴用频率估计相应的概率为p==0.44. (2)选择L1的有60人,选择L2的有40人, 故由调查结果得频率为 所用时 间(分钟) 10~20 20~30 30~40 40~50 50~60 L1的频率 0.1 0.2 0.3 0.2 0.2 L2的频率 0 0.1 0.4 0.4 0.1 (3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6, P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲应选择L1. 同理,P(B1)=0.1+0.2+0.3+0.2=0.8, P(B2)=0.1+0.4+0.4=0.9, ∵P(B1)<P(B2),∴乙应选择L2. 1.有一个游戏,其规那么是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南〞与事件“乙向南〞是 ( ) A.互斥但非对立事件 B.对立事件 C.相互独立事件 D.以上都不对 A [由于每人一个方向,事件“甲向南〞与事件“乙向南〞不能同时发生,但能同时不发生,故是互斥事件,但不是对立事件.] 2.对一批产品的长度(单位:mm)进行抽样检测,以下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,那么其为二等品的概率为( ) A.0.09 B.0.20 C.0.25 D.0.45 D [设[25,30)上的频率为x,由所有矩形面积之和为1,即x+(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.] 3.某运发动每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运发动三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运发动三次投篮恰有两次命中的概率为________. 0.25 [20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=0.25,以此估计该运发动三次投篮恰有两次命中的概率为0.25.] 4.(2022·郑州模拟)某商店方案每天购进某商品假设干件,商店每销售一件该商品可获得利润50元,假设供大于求,剩余商品全部退回,但每件退回商品亏损10元;假设供不应求,那么从外部调剂,此时每件调剂商品可获得利润30元. (1)假设商店一天购进该商品10件,求当天的利润y(单位:元)关于当天的需求量n(单位:件,n∈N+)的函数解析式; (2)商店记录了50天该商品的日需求量n(单位:件),整理得下表: 日需求量n/件 8 9 10 11 12 频数 9 11 15 10 5 (ⅰ)假设商店在这50天内每天购进10件该商品,求这50天的日利润的平均数; (ⅱ)假设商店一天购进10件该商品,以50天记录的各日需求量的频率作为各日需求量的概率,求当天的利润大于500元的概率. [解] (1)当日需求量n≥10时,利润y=50×10+(n-10)×30=30n+200; 当日需求量n<10时,利润y=50×n-(10-n)×10=60n-100. 所以日利润y关于日需求量n的函数解析式为 y= (2)(ⅰ)由(1)及表格可知,这50天中有9天的日利润为380元,有11天的日利润为440元,有15天的日利润为500元,有10天的日利润为530元,有5天的日利润为560元, 所以这50天的日利润的平均数为×(380×9+440×11+500×15+530×10+560×5)=477.2(元). (ⅱ)假设当天的利润大于500元,那么日需求量大于10件, 那么当天的利润大于500元的概率P==. 1.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率 为,取得两个绿球的概率为,那么取得两个同颜色的球的概率为________;至少取得一个红球的概率为________. [(1)由于“取得两个红球〞与“取得两个绿球〞是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=+=. (2)由于事件A“至少取得一个红球〞与事件B“取得两个绿球〞是对立事件,那么至少取得一个红球的概率为P(A)=1-P(B)=1-=.] 2.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.近20年X的值为140,110,160,70,200,160,140,160,220,200, 110,160,160,200,140,110,160,220, 140,160. (1)完成如下的频率分布表: 近20年六月份降雨量频率分布表 降雨量 70 110 140 160 200 220 频率 (2)假定今年6月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,那么今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为________. (1) 降雨量 70 110 140 160 200 220 频率 (2) [ (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为 降雨量 70 110 140 160 200 220 频率 (2)由可得Y=+425,故P(“发电量低于490万千瓦时或超过530万千瓦时〞)=P(Y<490或Y>530)=P(X<130或X>210) =P(X=70)+P(X=110)+P(X=220) =++=.] 7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 课后 限时 集训 67 随机 事件 概率 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文