2022年各地中考数学解析版试卷分类汇编(第1期)专题18图形的展开与叠折.docx
《2022年各地中考数学解析版试卷分类汇编(第1期)专题18图形的展开与叠折.docx》由会员分享,可在线阅读,更多相关《2022年各地中考数学解析版试卷分类汇编(第1期)专题18图形的展开与叠折.docx(12页珍藏版)》请在咨信网上搜索。
图形的展开与叠折 一、选择题 1. (2022·四川资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G假设AB=,EF=2,∠H=120°,那么DN的长为〔 〕 A.B.C.﹣D.2﹣ 【考点】矩形的性质;菱形的性质;翻折变换〔折叠问题〕. 【分析】延长EG交DC于P点,连接GC、FH,那么△GCP为直角三角形,证明四边形OGCM为菱形,那么可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案. 【解答】解:长EG交DC于P点,连接GC、FH;如下列图: 那么CP=DP=CD=,△GCP为直角三角形, ∵四边形EFGH是菱形,∠EHG=120°, ∴GH=EF=2,∠OHG=60°,EG⊥FH, ∴OG=GH•sin60°=2×=, 由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG, ∴PG==, ∵OG∥CM, ∴∠MOG+∠OMC=180°, ∴∠MCG+∠OMC=180°, ∴OM∥CG, ∴四边形OGCM为平行四边形, ∵OM=CM, ∴四边形OGCM为菱形, ∴CM=OG=, 根据题意得:PG是梯形MCDN的中位线, ∴DN+CM=2PG=, ∴DN=﹣; 应选:C. 2.(2022·四川资阳)如图是一个正方体纸盒的外外表展开图,那么这个正方体是〔 〕 A.B.C.D. 【考点】几何体的展开图. 【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论. 【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上, ∴C符合题意. 应选C. 依次顺延 3. 〔2022·四川达州·3分〕如图是一个正方体的外表展开图,那么原正方体中与“你〞字所在面相对的面上标的字是〔 〕 A.遇 B.见C.未D.来 【考点】几何体的展开图. 【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形, “遇〞与“的〞是相对面, “见〞与“未〞是相对面, “你〞与“来〞是相对面. 应选D. 4.〔2022·广东深圳〕把以下列图形折成一个正方体的盒子,折好后与“中〞相对的字是〔 〕 A.祝 B.你 C.顺 D.利 答案:C 考点:正方体的展开。 解析:假设以“考〞为底,那么“中〞是左侧面,“顺〞是右侧面,所以,选C。 5. 〔2022年浙江省台州市〕小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了〔 〕 A.1次 B.2次 C.3次 D.4次 【考点】翻折变换〔折叠问题〕. 【分析】由折叠得出四个角相等的四边形是矩形,再由一组邻边相等,即可得出四边形是正方形. 【解答】解:小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了3次;理由如下: 小红把原丝巾对折两次〔共四层〕,如果原丝巾的四个角完全重合,即说明它是矩形; 沿对角线对折1次,假设两个三角形重合,说明一组邻边相等,因此是正方形; 应选:C. 6. 〔2022年浙江省温州市〕如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,那么a,b,c的大小关系是〔 〕 A.c>a>bB.b>a>cC.c>b>aD.b>c>a 【考点】翻折变换〔折叠问题〕. 【分析】〔1〕图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长; 〔2〕图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长; 〔3〕图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长. 【解答】解:第一次折叠如图1,折痕为DE, 由折叠得:AE=EC=AC=×4=2,DE⊥AC ∵∠ACB=90° ∴DE∥BC ∴a=DE=BC=×3= 第二次折叠如图2,折痕为MN, 由折叠得:BN=NC=BC=×3=,MN⊥BC ∵∠ACB=90° ∴MN∥AC ∴b=MN=AC=×4=2 第三次折叠如图3,折痕为GH, 由勾股定理得:AB==5 由折叠得:AG=BG=AB=×5=,GH⊥AB ∴∠AGH=90° ∵∠A=∠A,∠AGH=∠ACB ∴△ACB∽△AGH ∴= ∴= ∴GH=,即c= ∵2>> ∴b>c>a 应选〔D〕 7.〔2022·山东枣庄〕有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置〔如图〕,请你根据图形判断涂成绿色一面的对面涂的颜色是 绿 白 黑 红 绿 蓝 白 黄 红 A. 白 B. 红 C.黄 D.黑 【答案】C. 考点:几何体的侧面展开图. 8.〔2022·山东枣庄〕如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,那么线段BP的长不可能是 A.3 B.4 C.5.5 D.10 【答案】A. 【解析】 试题分析:由题意可知,△ABC′是由△ABC翻折得到的,所以△ABC′的面积也为6,当BC′⊥AD时,BP最短,因AC=AC′=3,△ABC′的面积为6,可求得BP=4,即BP最短为4,所以线段BP的长不可能是3,故答案选A. 考点:点到直线的距离. 9.〔2022山东省聊城市,3分〕如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,假设∠2=40°,那么图中∠1的度数为〔 〕 A.115° B.120°C.130°D.140° 【考点】翻折变换〔折叠问题〕. 【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可. 【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处, ∴∠BFE=∠EFB',∠B'=∠B=90°, ∵∠2=40°, ∴∠CFB'=50°, ∴∠1+∠EFB'﹣∠CFB'=180°, 即∠1+∠1﹣50°=180°, 解得:∠1=115°, 应选A. 【点评】此题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等. 10.〔2022.山东省威海市,3分〕如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,那么CF的长为〔 〕 A.B.C.D. 【考点】矩形的性质;翻折变换〔折叠问题〕. 【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案. 【解答】解:连接BF, ∵BC=6,点E为BC的中点, ∴BE=3, 又∵AB=4, ∴AE==5, ∴BH=, 那么BF=, ∵FE=BE=EC, ∴∠BFC=90°, ∴CF==. 应选:D. 11.〔2022·江苏省宿迁〕如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.假设AB的长为2,那么FM的长为〔 〕 A.2 B.C.D.1 【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值. 【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处, ∴FB=AB=2,BM=1, 那么在Rt△BMF中, FM=, 应选:B. 【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键. 12.〔2022•浙江省舟山〕把一张圆形纸片按如下列图方式折叠两次后展开,图中的虚线表示折痕,那么的度数是〔 〕 【考点】圆心角、弧、弦的关系;翻折变换〔折叠问题〕. 【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案. 【解答】解:如下列图:连接BO,过点O作OE⊥AB于点E, 由题意可得:EO=BO,AB∥DC, 可得∠EBO=30°, 故∠BOD=30°, 那么∠BOC=150°, 故的度数是150°. 应选:C. 二、填空题 1. (2022·云南)如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 144或384π. 【考点】几何体的展开图. 【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解. 【解答】解:①底面周长为6高为16π, π×〔〕2×16π =π××16π =144; ②底面周长为16π高为6, π×〔〕2×6 =π×64×6 =384π. 答:这个圆柱的体积可以是144或384π. 故答案为:144或384π. 【点评】此题考查了展开图折叠成几何体,此题关键是熟练掌握圆柱的体积公式,注意分类思想的运用. 2. (2022·云南)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.假设△DEB′为直角三角形,那么BD的长是 2或5 . 【考点】翻折变换〔折叠问题〕. 【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可. 【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8, ∴AB=10, ∵以AD为折痕△ABD折叠得到△AB′D, ∴BD=DB′,AB′=AB=10. 如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F. 设BD=DB′=x,那么AF=6+x,FB′=8﹣x. 在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即〔6+x〕2+〔8﹣x〕2=102. 解得:x1=2,x2=0〔舍去〕. ∴BD=2. 如图2所示:当∠B′ED=90°时,C与点E重合. ∵AB′=10,AC=6, ∴B′E=4. 设BD=DB′=x,那么CD=8﹣x. 在Rt△′BDE中,DB′2=DE2+B′E2,即x2=〔8﹣x〕2+42. 解得:x=5. ∴BD=5. 综上所述,BD的长为2或5. 故答案为:2或5. 【点评】此题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键. 3. 〔2022·四川成都·5分〕如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按以下步骤进行裁剪和拼图. 第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开〔E为BD上任意一点〕,得到△ABE和△ADE纸片; 第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处; 第三步:如图③,将△DCF纸片翻转过来使其反面朝上置于△PQM处〔边PQ与DC重合,△PQM和△DCF在DC同侧〕,将△BCG纸片翻转过来使其反面朝上置于△PRN处,〔边PR与BC重合,△PRN和△BCG在BC同侧〕. 那么由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为. 【考点】平移的性质. 【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论. 【解答】解:∵△ABE≌△CDF≌△PMQ, ∴AE=DF=PM,∠EAB=∠FDC=∠MPQ, ∵△ADE≌△BCG≌△PNR, ∴AE=BG=PN,∠DAE=∠CBG=∠RPN, ∴PM=PN, ∵四边形ABCD是平行四边形, ∴∠DAB=∠DCB=45°, ∴∠MPN=90°, ∴△MPN是等腰直角三角形, 当PM最小时,对角线MN最小,即AE取最小值, ∴当AE⊥BD时,AE取最小值, 过D作DF⊥AB于F, ∵平行四边形ABCD的面积为6,AB=3, ∴DF=2, ∵∠DAB=45°, ∴AF=DF=2, ∴BF=1, ∴BD==, ∴AE===, ∴MN=AE=, 故答案为:. 三、解答题 1. (2022·新疆)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E. 〔1〕求证:四边形BCED′是菱形; 〔2〕假设点P时直线l上的一个动点,请计算PD′+PB的最小值. 【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换〔折叠问题〕. 【分析】〔1〕利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论; 〔2〕由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,那么BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论. 【解答】证明:〔1〕∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处, ∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E, ∵DE∥AD′, ∴∠DEA=∠EAD′, ∴∠DAE=∠EAD′=∠DEA=∠D′EA, ∴∠DAD′=∠DED′, ∴四边形DAD′E是平行四边形, ∴DE=AD′, ∵四边形ABCD是平行四边形, ∴AB=DC,AB∥DC, ∴CE=D′B,CE∥D′B, ∴四边形BCED′是平行四边形; ∵AD=AD′, ∴▱DAD′E是菱形, 〔2〕∵四边形DAD′E是菱形, ∴D与D′关于AE对称, 连接BD交AE于P,那么BD的长即为PD′+PB的最小值, 过D作DG⊥BA于G, ∵CD∥AB, ∴∠DAG=∠CDA=60°, ∵AD=1, ∴AG=,DG=, ∴BG=, ∴BD==, ∴PD′+PB的最小值为. 【点评】此题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键. 2.〔2022•江苏省扬州〕如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处. 〔1〕求证:四边形AECF是平行四边形; 〔2〕假设AB=6,AC=10,求四边形AECF的面积. 【考点】矩形的性质;平行四边形的判定与性质;翻折变换〔折叠问题〕. 【分析】〔1〕首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME〔ASA〕,由平行四边形的判定定理可得结论; 〔2〕由AB=6,AC=10,可得BC=8,设CE=x,那么EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果. 【解答】〔1〕证明:∵折叠, ∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°, ∴∠ANF=90°,∠CME=90°, ∵四边形ABCD为矩形, ∴AB=CD,AD∥BC, ∴AM=CN, ∴AM﹣MN=CN﹣MN, 即AN=CM, 在△ANF和△CME中, , ∴△ANF≌△CME〔ASA〕, ∴AF=CE, 又∵AF∥CE, ∴四边形AECF是平行四边形; 〔2〕解:∵AB=6,AC=10,∴BC=8, 设CE=x,那么EM=8﹣x,CM=10﹣6=4, 在Rt△CEM中, 〔8﹣x〕2+42=x2, 解得:x=5, ∴四边形AECF的面积的面积为:EC•AB=5×6=30.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 各地 中考 数学 解析 试卷 分类 汇编 专题 18 图形 展开
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文