超级全能生高三下学期第六次检测数学试卷含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超级 全能 生高三 下学 第六 检测 数学试卷 解析
- 资源描述:
-
2021-2022高考数学模拟试卷含解析 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设为非零向量,则“”是“与共线”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 2.设全集U=R,集合,则( ) A.{x|-1 <x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1} 3.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为( ) ① ② ③ ④ ⑤ A.1个 B.2个 C.3个 D.4个 4.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是( ) A. B. C. D. 5.已知,,,则,,的大小关系为( ) A. B. C. D. 6.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( ) A. B. C. D. 7.下图所示函数图象经过何种变换可以得到的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 8.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( ) A. B. C. D. 10.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( ) A. B.3 C. D. 11.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有( ) A.6种 B.12种 C.24种 D.36种 12.已知函数,,若成立,则的最小值是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________. 14.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________. 15.函数在的零点个数为_________. 16.在的展开式中,各项系数之和为,则展开式中的常数项为__________________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)讨论的单调性; (2)若恒成立,求实数的取值范围. 18.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点. (1)已知点在棱上,且平面平面,试确定点的位置并说明理由; (2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值. 19.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求直线的普通方程和曲线的直角坐标方程; (2)设点,直线与曲线交于两点,求的值. 20.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,. (1)求数列,的通项公式; (2)求; (3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由. 21.(12分)已知函数. (1)求不等式的解集; (2)若关于的不等式在区间内无解,求实数的取值范围. 22.(10分)已知函数,. (Ⅰ)求的最小正周期; (Ⅱ)求在上的最小值和最大值. 参考答案 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.A 【解析】 根据向量共线的性质依次判断充分性和必要性得到答案. 【详解】 若,则与共线,且方向相同,充分性; 当与共线,方向相反时,,故不必要. 故选:. 【点睛】 本题考查了向量共线,充分不必要条件,意在考查学生的推断能力. 2.C 【解析】 解一元二次不等式求得集合,由此求得 【详解】 由,解得或. 因为或,所以. 故选:C 【点睛】 本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题. 3.B 【解析】 满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证. 【详解】 满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1); ③不满足(2);④⑤均满足(1)(2). 故选:B. 【点睛】 本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题. 4.D 【解析】 利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围. 【详解】 的定义域为,, 所以在上递减,在上递增,在处取得极小值也即是最小值,,,,, 所以在区间上的最大值为. 要使在区间上任取三个实数,,均存在以,,为边长的三角形, 则需恒成立,且, 也即,也即当、时,成立, 即,且,解得.所以的取值范围是. 故选:D 【点睛】 本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题. 5.D 【解析】 构造函数,利用导数求得的单调区间,由此判断出的大小关系. 【详解】 依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D. 【点睛】 本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题. 6.B 【解析】 由题可知,,再结合双曲线第一定义,可得,对有, 即,解得,再对,由勾股定理可得,化简即可求解 【详解】 如图,因为,所以.因为所以. 在中,,即, 得,则.在中,由得. 故选:B 【点睛】 本题考查双曲线的离心率求法,几何性质的应用,属于中档题 7.D 【解析】 根据函数图像得到函数的一个解析式为,再根据平移法则得到答案. 【详解】 设函数解析式为, 根据图像:,,故,即, ,,取,得到, 函数向右平移个单位得到. 故选:. 【点睛】 本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用. 8.A 【解析】 作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断. 【详解】 作出函数的图象如图, 由图可知,, 函数有2个零点,即有两个不同的根, 也就是与在上有2个交点,则的最小值为; 设过原点的直线与的切点为,斜率为, 则切线方程为, 把代入,可得,即,∴切线斜率为, ∴k的取值范围是, ∴函数有两个零点”是“”的充分不必要条件, 故选A. 【点睛】 本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题. 9.D 【解析】 根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用双曲线的离心率公式求得e. 【详解】 直线F2A的直线方程为:y=kx,F1(0,),F2(0,), 代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0, ∴△=4k2p2﹣4p2=0,解得:k=±1, ∴A(p,),设双曲线方程为:1, 丨AF1丨=p,丨AF2丨p, 2a=丨AF2丨﹣丨AF1丨=( 1)p, 2c=p, ∴离心率e1, 故选:D. 【点睛】 本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题. 10.D 【解析】 设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值. 【详解】 由题意,设点. , 即, 整理得, 则,解得或. . 故选:. 【点睛】 本题考查直线与方程,考查平面内两点间距离公式,属于中档题. 11.B 【解析】 分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数. 【详解】 如果甲单独到县,则方法数有种. 如果甲与另一人一同到县,则方法数有种. 故总的方法数有种. 故选:B 【点睛】 本小题主要考查简答排列组合的计算,属于基础题. 12.A 【解析】 分析:设,则,把用表示,然后令,由导数求得的最小值. 详解:设,则,,, ∴,令, 则,,∴是上的增函数, 又,∴当时,,当时,, 即在上单调递减,在上单调递增,是极小值也是最小值, ,∴的最小值是. 故选A. 点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错. 二、填空题:本题共4小题,每小题5分,共20分。 13. 【解析】 由三个年级人数成等差数列和总人数可求得高二年级共有人,根据抽样比可求得结果. 【详解】 设高一、高二、高三人数分别为,则且, 解得:, 用分层抽样的方法抽取人,那么高二年级被抽取的人数为人. 故答案为:. 【点睛】 本题考查分层抽样问题的求解,涉及到等差数列的相关知识,属于基础题. 14. 【解析】 求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率. 【详解】 由得,即 联立得 解得或,∴. 故答案为:. 【点睛】 本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法. 15.1 【解析】 本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可. 【详解】 问题函数在的零点个数,可以转化为曲线交点个数问题. 在同一直角坐标系内,画出函数的图象,如下图所示: 由图象可知:当时,两个函数只有一个交点. 故答案为:1 【点睛】 本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想. 16. 【解析】 利用展开式各项系数之和求得的值,由此写出展开式的通项,令指数为零求得参数的值,代入通项计算即可得解. 【详解】 的展开式各项系数和为,得, 所以,的展开式通项为, 令,得,因此,展开式中的常数项为. 故答案为:. 【点睛】 本题考查二项展开式中常数项的计算,涉及二项展开式中各项系数和的计算,考查计算能力,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2). 【解析】 (1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解. 【详解】 (1), 当时,,在上单调递增; 当时,,,,, ∴在上单调递减,在上单调递增; 当时,,,,, ∴在上单调递减,在上单调递增. 综上:当时,在上单调递增; 当时,在上单调递减,在上单调递增; 当时,在上单调递减,在上单调递增. (2)由(1)可知: 当时,,∴成立. 当时,, ,∴. 当时, , ,∴,即. 综上. 【点睛】 本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 18.(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值. 【解析】 (1)为中点,可利用中位线与平行四边形性质证明,,从而证明平面平面; (2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值. 【详解】 (1)为中点,证明如下: 分别为中点, 又平面平面 平面 又,且四边形为平行四边形, 同理,平面,又 平面平面 (2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系 则, 设直线与平面所成角为,则 取平面的法向量为则 令,则 所以 当时,等号成立 即当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值. 【点睛】 本题主要考查了平面与平面的平行,直线与平面所成角的求解,考查了学生的直观想象与运算求解能力. 19.(1)直线普通方程:,曲线直角坐标方程:;(2). 【解析】 (1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果. 【详解】 (1)由直线参数方程消去可得普通方程为: 曲线极坐标方程可化为: 则曲线的直角坐标方程为:,即 (2)将直线参数方程代入曲线的直角坐标方程,整理可得: 设两点对应的参数分别为:,则, 【点睛】 本题考查极坐标与直角坐标的互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解. 20.(1);(2);(3)存在,1. 【解析】 (1)利用基本量法直接计算即可; (2)利用错位相减法计算; (3),令可得,,讨论即可. 【详解】 (1)设数列的公差为,数列的公比为, 因为, 所以,即,解得,或(舍去). 所以. (2), , 所以, 所以. (3)由(1)可得,, 所以. 因为是数列或中的一项,所以, 所以,因为, 所以,又,则或. 当时,有,即,令. 则. 当时,;当时,, 即. 由,知无整数解. 当时,有,即存在使得是数列中的第2项, 故存在正整数,使得是数列中的项. 【点睛】 本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题. 21.(1);(2). 【解析】 (1)只需分,,三种情况讨论即可; (2)在区间上恒成立,转化为,只需求出即可. 【详解】 (1)当时,,此时不等式无解;当时,, 由得;当时,,由得, 综上,不等式的解集为; (2)依题意,在区间上恒成立,则,当时, ;当时,,所以当时,, 由得或,所以实数的取值范围为. 【点睛】 本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题. 22.(Ⅰ);(Ⅱ)最小值和最大值. 【解析】 试题分析:(1)由已知利用两角和与差的三角函数公式及倍角公式将的解析式化为一个复合角的三角函数式,再利用正弦型函数的最小正周期计算公式,即可求得函数的最小正周期;(2)由(1)得函数,分析它在闭区间上的单调性,可知函数在区间上是减函数,在区间上是增函数,由此即可求得函数在闭区间上的最大值和最小值.也可以利用整体思想求函数在闭区间上的最大值和最小值. 由已知,有 的最小正周期. (2)∵在区间上是减函数,在区间上是增函数,,,∴函数在闭区间上的最大值为,最小值为. 考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




超级全能生高三下学期第六次检测数学试卷含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4388751.html