2023版高考数学一轮复习第九章立体几何9.2空间图形的基本关系与公理练习理北师大版.doc
《2023版高考数学一轮复习第九章立体几何9.2空间图形的基本关系与公理练习理北师大版.doc》由会员分享,可在线阅读,更多相关《2023版高考数学一轮复习第九章立体几何9.2空间图形的基本关系与公理练习理北师大版.doc(6页珍藏版)》请在咨信网上搜索。
1、9.2 空间图形的根本关系与公理核心考点精准研析考点一平面的根本性质1. 以下说法正确的选项是()A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面2.,是平面,a,b,c是直线,=a,=b,=c,假设ab=P,那么()A.PcB.PcC.ca=D.c=3.在三棱锥A-BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EFHG=P,那么点P()A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点共面的图形是
2、()A.B.C.D.【解析】1.选D.A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.2.选A.如图,因为ab=P,所以Pa,Pb,因为=a,=b,所以P,P,而=c,所以Pc.3.选B.如下图,因为EF 平面ABC,HG 平面ACD,EFHG=P,所以P平面ABC,P平面ACD.又因为平面ABC平面ACD=AC,所以PAC.4.选D.在图中分别连接PS,QR,易证PSQR,所以P,Q,R,S四点共面;在图中分别连接PQ,RS,易证PQRS,所以P,Q,R,S共面.在图中过点P,Q,R,
3、S可作一正六边形,故四点共面;在图中PS与QR为异面直线,所以四点不共面.共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内;证两平面重合.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上;直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.【秒杀绝招】排除法解T4,在图中PS与QR为异面直线,所以四点不共面,可排除A,B,C,直接选D.考点二异面直线所成的角【典例】1.(2023全国卷II)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,那么异面
4、直线AE与CD所成角的正切值为()A.B.C.D.2.直三棱柱ABC-A1B1C1中,ABC=120,AB=2,BC=CC1=1,那么异面直线AB1与BC1所成角的余弦值为 ()A.B.C.D.【解题导思】序号联想解题1画出图形,由ABCD,联想到AE与CD所成角为EAB,解直角三角形.2画出图形,图中没有与AB1,BC1平行的直线,联想到作辅助线.【解析】1.选C.因为CDAB,所以EAB即为异面直线AE与CD所成角,连接BE,在直角三角形ABE中,设AB=a,那么BE=a,所以tanEAB=.2.选C.如图,取AB,BB1,B1C1的中点M,N,P,连接MN,NP,PM,可知AB1与BC1
5、所成的角等于MN与NP所成的角.由题意可知BC1=,AB1=,那么MN=AB1=,NP=BC1=.取BC的中点Q,连接PQ,QM,那么可知PQM为直角三角形.在ABC中,AC2=AB2+BC2-2ABBCcosABC=4+1-221=7,即AC=.又CC1=1,所以PQ=1,MQ=AC=.在MQP中,可知MP=.在PMN中,cosPNM=-,又异面直线所成角的范围为,故所求角的余弦值为.【一题多解】选C.把三棱柱ABC-A1B1C1补成四棱柱ABCD-A1B1C1D1,如图,连接C1D,BD,那么AB1与BC1所成的角为BC1D(或其补角).由题意可知BC1=,BD=,C1D=AB1=.可知B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 第九 立体几何 9.2 空间 图形 基本 关系 公理 练习 北师大
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。