2022-2022学年高中数学课时分层作业14独立重复试验与二项分布含解析新人教B版选修.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 学年 高中数学 课时 分层 作业 14 独立 重复 试验 二项分布 解析 新人 选修
- 资源描述:
-
课时分层作业(十四) 独立重复试验与二项分布 (建议用时:45分钟) [基础达标练] 一、选择题 1.一头病牛服用某药品后被治愈的概率是90%,则服用这种药的5头病牛中恰有3头牛被治愈的概率为( ) A.0.93 B.1-(1-0.9)3 C.C×0.93×0.12 D.C×0.13×0.92 【解析】 由独立重复试验恰好发生k次的概率公式知,该事件的概率为C×0.93×(1-0.9)2. 【答案】 C 2.假设流星穿过大气层落在地面上的概率为,现有流星数量为5的流星群穿过大气层有2个落在地面上的概率为( ) A. B. C. D. 【解析】 此问题相当于一个试验独立重复5次,有2次发生的概率,所以P=C·2·3=. 【答案】 B 3.在4次独立重复试验中事件出现的概率相同.若事件A至少发生1次的概率为,则事件A在1次试验中出现的概率为( ) A. B. C. D. 【解析】 设所求概率为p,则1-(1-p)4=,得p=. 【答案】 A 4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,质点P移动五次后位于点(2,3)的概率是( ) A.5 B.C×5 C.C×3 D.C×C×5 【解析】 如图,由题可知,质点P必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次独立重复试验向右恰好发生2次的概率.所以概率为 P=C×2×3=C5.故选 B. 【答案】 B 5.若随机变量ξ~B,则P(ξ=k)最大时,k的值为( ) A.1或2 B.2或3 C.3或4 D.5 【解析】 依题意P(ξ=k)=C×k×5-k,k=0,1,2,3,4,5. 可以求得P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=.故当k=1或2时,P(ξ=k)最大. 【答案】 A 二、填空题 6.已知汽车在公路上行驶时发生车祸的概率为0.001,如果公路上每天有1 000辆汽车通过,则公路上发生车祸的概率为________;恰好发生一起车祸的概率为________.(已知0.9991 000≈0.367 70,0.999999≈0.368 06,精确到0.000 1) 【解析】 设发生车祸的车辆数为X,则X~B(1 000,0.001). (1)记事件A:“公路上发生车祸”,则P(A)=1-P(X=0)=1-0.9991 000≈1-0.367 70=0.632 3. (2)恰好发生一次车祸的概率为 P(X=1)=C×0.001×0.999999≈0.368 06≈0.368 1. 【答案】 0.632 3 0.368 1 7.在等差数列{an}中,a4=2,a7=-4,现从{an}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为______.(用数字作答) 【解析】 由已知可求通项公式为an=10-2n(n=1,2,3,…),其中a1,a2,a3,a4为正数,a5=0,a6,a7,a8,a9,a10为负数,∴从中取一个数为正数的概率为=,取得负数的概率为. ∴取出的数恰为两个正数和一个负数的概率为C×2×1=. 【答案】 8.下列说法正确的是________.(填序号) ①某同学投篮的命中率为0.6,他10次投篮中命中的次数X是一个随机变量,且X~B(10,0.6); ②某福彩的中奖概率为p,某人一次买了8张,中奖张数X是一个随机变量,且X~B(8,p); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X是随机变量,且X~B. 【解析】 ①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义. 【答案】 ①② 三、解答题 9.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列. 【解】 由已知每位参加保险人员选择A社区的概率为,4名人员选择A社区即4次独立重复试验, 即X~B,所以P(X=k)=C·k·4-k(k=0,1,2,3,4),所以X的分布列为 X 0 1 2 3 4 P 10.甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为,乙队获胜的概率为,且每局比赛的胜负是相互独立的. (1)求甲队以3∶2获胜的概率; (2)求乙队获胜的概率. 【解】 (1)设甲队以3∶2获胜的概率为P1,则P1=C2·2·=. (2)设乙队获胜的概率为P2,则P2=3+C2··+C2·2·=. [能力提升练] 1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ) A.0.216 B.0.36 C.0.432 D.0.648 【解析】 甲获胜有两种情况,一是甲以2∶0获胜,此时p1=0.62=0.36;二是甲以2∶1获胜,此时p2=C×0.6×0.4×0.6=0.288,故甲获胜的概率p=p1+p2=0.648. 【答案】 D 2.掷一枚质地均匀的骰子n次,设出现k次点数为1的概率为Pn(k),若n=20,则当Pn(k)取最大值时,k为( ) A.3 B.4 C.8 D.10 【解析】 掷一枚质地均匀的骰子20次,其中出现点数为1的次数为X,X~B,Pn(k)=C·20-k·k. =. 当1≤k≤3时,>1,Pn(k)>Pn(k-1).当k≥4时,<1,Pn(k)<Pn(k-1).因此k=3时,Pn(k)取最大值.故选A. 【答案】 A 3.有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p(0<p<1),假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为________. 【解析】 所有同学都不通过的概率为(1-p)n,故至少有一位同学通过的概率为1-(1-p)n. 【答案】 1-(1-p)n 4.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的. (1)求在1次游戏中玩家甲胜玩家乙的概率; (2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记做随机变量X,求X的分布列. 【解】 (1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共有9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个. 所以在1次游戏中玩家甲胜玩家乙的概率P=. (2)X的可能取值分别为0,1,2,3,X~B, 则P(X=0)=C·3=, P(X=1)=C·1·2=, P(X=2)=C·2·1=, P(X=3)=C·3=. X的分布列如下: X 0 1 2 3 P展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2022-2022学年高中数学课时分层作业14独立重复试验与二项分布含解析新人教B版选修.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4388477.html