2017-2018学年高中数学人教A版必修1学案:3.2函数模型及其应用第2课时课堂探究学案-.doc
《2017-2018学年高中数学人教A版必修1学案:3.2函数模型及其应用第2课时课堂探究学案-.doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学人教A版必修1学案:3.2函数模型及其应用第2课时课堂探究学案-.doc(5页珍藏版)》请在咨信网上搜索。
3.2 函数模型应用举例 课堂探究 探究一 已知函数模型的应用题 已知函数模型的应用题主要有两种情况:一是已知某量满足某函数式,据此列出所求量的函数式,然后利用函数知识解答相关问题;二是已知所求量满足的函数式,但式中含有参数,像这样的问题,应先根据已知条件求出函数式中的参数,然后再据此函数解答相关问题. 【典型例题1】 物体在常温下的温度变化可以用牛顿冷却规律来描述,设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)×,其中Ta表示环境温度,h称为半衰期,现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min,那么降温到35 ℃时,需要多长时间? 解:先设定半衰期h,由题意知 40-24=(88-24)×,即=, 解之,得h=10, 故原式可化简为T-24=(88-24)×, 当T=35时,代入上式,得,35-24=(88-24)×,即=, 两边取对数,用计算器求得t≈25. 因此,约需要25 min,可降温到35 ℃. 探究二 建立函数模型的应用题 当实际应用题中没有给出函数模型时,其解题步骤是: 第一步:认真读题,缜密审题,确切理解题意,明确问题的实际背景,找出题意中所蕴含的函数关系; 第二步:恰当地设未知数,列出函数解析式,将实际问题转化成函数问题,即实际问题函数化; 第三步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解; 第四步:将所得函数问题的解还原成实际问题的结论,要注意检验所得的结论是否符合实际问题的意义. 【典型例题2】 某投资公司投资甲、乙两个项目所获得的利润分别是M(亿元)和N(亿元),它们与投资额t(亿元)的关系有经验公式:M=,N=t.今该公司将用3亿元投资这两个项目,若设甲项目投资x亿元,投资这两个项目所获得的总利润为y亿元. (1)写出y关于x的函数表达式; (2)求总利润y的最大值. 思路分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)转化为求(1)中函数的最大值. 解:(1)当甲项目投资x亿元时,获得利润为M=(亿元),此时乙项目投资(3-x)亿元,获得利润为N=(3-x)(亿元), 则有y=+(3-x),x∈[0,3]. (2)令=t,t∈[0,],则x=t2, 此时y=t+(3-t2)=-(t-1)2+. ∵t∈[0,], ∴当t=1,即x=1时,y有最大值,为, 即总利润y的最大值是亿元. 探究三 拟合函数模型的应用题 对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题.函数拟合与预测的一般步骤是: (1)能够根据原始数据、表格,绘出散点图. (2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况一般是不会发生的.因此,使实际点尽可能地均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了. (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式. (4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据. 【典型例题3】 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x cm与当年灌溉面积y hm2.现有连续10年的实测资料,如下表所示. 年序 最大积雪深度x/cm 灌溉面积y/hm2 1 15.2 28.6 2 10.4 21.1 3 21.2 40.5 4 18.6 36.6 5 26.4 49.8 6 23.4 45.0 7 13.5 29.2 8 16.7 34.1 9 24.0 45.8 10 19.1 36.9 (1)描点画出灌溉面积y hm2随积雪深度x cm变化的图象; (2)建立一个能基本反映灌溉面积变化的函数模型y=f(x),并画出图象; (3)根据所建立的函数模型,若今年最大积雪深度为25 cm,则可以灌溉的土地面积是多少? 思路分析:首先根据表中数据作出散点图,然后通过观察图象来判断问题所适用的函数模型. 解:(1)描点作图如图甲: (2)从图甲中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y(hm2)和最大积雪深度x(cm)满足线性函数模型y=a+bx(a,b为常数,b≠0). 取其中的两组数据(10.4,21.1),(24.0,45.8), 代入y=a+bx,得 用计算器可算得a≈2.4,b≈1.8. 这样,我们得到一个函数模型y=2.4+1.8x.作出函数图象如图乙,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系. (3)由(2),得当x=25时,y=2.4+1.8×25=47.4,即当最大积雪深度为25 cm时,可以灌溉土地47.4 hm2. 探究四 易错辨析 易错点 求函数最值时忽略了实际情况对函数定义域的限制 【典型例题4】 如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分别截取AE,AH,CG,CF,且AE=AH=CG=CF=x. 问:当x为何值时,四边形EFGH的面积最大?并求出最大面积. 错解:设四边形EFGH的面积为S, 则S=ab-2 =-2x2+(a+b)x =-22+. 根据二次函数的性质可知, 当x=时,S有最大值. 错因分析:错解中没有考虑所得二次函数的定义域,就直接利用二次函数的性质求解,从而导致出错. 正解:设四边形EFGH的面积为S,则 S=ab-2 =-2x2+(a+b)x =-22+,x∈(0,b]. 因为0<b<a, 所以0<b<. 当≤b,即a≤3b时, 当x=时,S有最大值; 当>b,即a>3b时, 易知S(x)在(0,b]上是增函数, 所以当x=b时,S有最大值ab-b2. 综上可得,当a≤3b,x=时,S有最大值;当a>3b,x=b时,S有最大值ab-b2. 反思利用函数解决实际问题时,要遵循定义域优先的原则,即必须考虑到自变量的实际意义,否则会出现错解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 2018 年高 学人 必修 3.2 函数 模型 及其 应用 课时 课堂 探究
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2017-2018学年高中数学人教A版必修1学案:3.2函数模型及其应用第2课时课堂探究学案-.doc
链接地址:https://www.zixin.com.cn/doc/4388056.html
链接地址:https://www.zixin.com.cn/doc/4388056.html