2008年普通高等学校招生全国统一考试文科数学试题及答案-福建卷.doc
《2008年普通高等学校招生全国统一考试文科数学试题及答案-福建卷.doc》由会员分享,可在线阅读,更多相关《2008年普通高等学校招生全国统一考试文科数学试题及答案-福建卷.doc(10页珍藏版)》请在咨信网上搜索。
2008年普通高等学校招生全国统一考试(福建卷) 文科数学 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则等于( ) A. B. C. D. 2.a=1”是“直线和直线互相垂直”的( )条件 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.设是等差数列,若,则数列前8项和为( ) A.128 B.80 C.64 D.56 4.函数,若,则的值为( ) A.3 B.0 C.-1 D.-2 5.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是( ) A. B. C. D. 6.如图,在长方体中,分别为,则与平面所成的角的正弦值为( ) A. B. C. D. 7.函数的图像向左平移个单位后,得到函数的图像,则的解析式为( ) A. B. C. D. 8.在△ABC中,角A,B,C的对应边分别为a,b,c,若,则角B的值为( ) A. B. C.或 D.或 9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A.14 B.24 C.28 D.48 10.若实数x,y满足{ ,则的取值范围是( ) A. B. C. D. 11.如果函数的图像如右图,那么导函数的图像可能是( ) 12.双曲线的两个焦点为,若P为其上一点,且,则双曲线离心率的取值范围为( ) A. B. C. D. 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13. 展开式中的系数是 (用数字作答) 14.若直线与圆没有公共点,则实数m的取值范围是 15.若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是 16.设P是一个数集,且至少含有两个数,若对任意,都有(除数),则称P是一个数域。例如有理数集Q是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域; ③若有理数集,则数集M必为数域; ④数域必为无限域。 其中正确的命题的序号是 (把你认为正确的命题序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知向量且。 (1)求的值; (2)求函数的值域。 18. (本小题满分12分) 三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响。 (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由。 19. (本小题满分12分) 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。 (1)求证:PO⊥平面ABCD; (2)求异面直线PB与CD所成角的余弦值; (3)求点A到平面PCD的距离 20. (本小题满分12分) 已知是正整数组成的数列,,且点在函数的图像上: (1)求数列的通项公式; (2)若数列满足,求证: 21. (本小题满分12分) 已知函数的图像过点(-1,-6),且函数的图像关于y轴对称。 (1)求m,n的值及函数的单调区间; (2)若a>0,求函数在区间内的极值。 22. (本小题满分14分) 如图,椭圆C:的一个焦点为F(1,0)且过点(2,0)。 (1)求椭圆C的方程; (2)若AB为垂直与x轴的动弦,直线l:x=4与x轴交于N,直线AF与BN交于点M. ①求证:点M恒在椭圆C上; ②求△AMN面积的最大值。 2008年普通高等学校招生全国统一考试(福建卷) 文科数学参考答案 一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. 1.A 2.C 3.C 4.B 5.C 6.D 7.A 8.A 9.A 10.D 11.A 12.B 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13. 84 14. 15. 16. ①④ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变、一元二次函数的最值等基本知识,考查运算能力。满分12分。 解:(1)由题意得 , 因为cosA≠0,所以tanA=2 (2)由(1)知tanA=2得 当,有最大值; 当,有最小值。 所以所求函数的值域为 18.解:记“第i个人破译出密码”为事件,依题意有 且A1,A2,A3相互独立。 (1) 设“恰好二人破译出密码”为事件B,则有: B=A1·A2··A1··A3+·A2·A3且A1·A2·,A1··A3,·A2·A3 彼此互斥 于是P(B)=P(A1·A2·)+P(A1··A3)+P(·A2·A3) = =. (2)设“密码被破译”为事件C,“密码未被破译”为事件D,则有: D=··,且,,互相独立,则有 P(D)=P()·P()·P()==. 而P(C)=1-P(D)=,故P(C)>P(D). 所以密码被破译的概率比密码未被破译的概率大 19.解: 解法一: (Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD. 又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO 平面PAD, 所以PO⊥平面ABCD. (Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD, AD=2AB=2BC, 有OD∥BC且OD=BC,所以四边形OBCD是平行四边形, 所以OB∥DC. 由(Ⅰ)知PO⊥OB,∠PBO为锐角, 所以∠PBO是异面直线PB与CD所成的角. 因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=, 在Rt△POA中,因为AP=,AO=1,所以OP=1, 在Rt△PBO中,PB=, cos∠PBO=, 所以异面直线PB与CD所成的角的余弦值为. (Ⅲ)由(Ⅱ)得CD=OB=, 在Rt△POC中,PC=, 所以PC=CD=DP,S△PCD=·2=. 又S△= 设点A到平面PCD的距离h, 由VP-ACD=VA-PCD, 得S△ACD·OP=S△PCD·h, 即×1×1=××h, 解得h=. 解法二: (Ⅰ)同解法一, (Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz. 则A(0,-1,0),B(1,-1,0),C(1,0,0), D(0,1,0),P(0,0,1). 所以=(-1,1,0),=(t,-1,-1), cos〈、〉=, 所以异面直线PB与CD所成的角的余弦值为, (Ⅲ)设平面PCD的法向量为n=(x0,y0,x0), 由(Ⅱ)知=(-1,0,1),=(-1,1,0), 则 n·=0,所以 -x0+ z0=0, n·=0, -x0+ y0=0, 即x0=y0=z0, 取x0=1,得平面的一个法向量为n=(1,1,1). 又=(1,1,0). 从而点A到平面PCD的距离d= 20.解: 解法一: (Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1, 所以数列{an}是以1为首项,公差为1的等差数列. 故an=1+(a-1)×1=n. (Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n. bn=(bn-bn-1)+(bn-1-bn-2)+···+(b2-b1)+b1 =2n-1+2n-2+···+2+1 ==2n-1. 因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2 =(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1) =-5·2n+4·2n =-2n<0, 所以bn·bn+2<b, 解法二: (Ⅰ)同解法一. (Ⅱ)因为b2=1, bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b =2n+1·bn-1-2n·bn+1-2n·2n+1 =2n(bn+1-2n+1) =2n(bn+2n-2n+1) =2n(bn-2n) =… =2n(b1-2) =-2n〈0, 所以bn-bn+2<b2n+1 21.解:(1)由函数f (x)图像过(-1,-6),得m-n=-3,……① 由,得: 而图像关于y轴对称,所以:,即m=-3, 代入①得n=0 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表: X (-∞.0) 0 (0,2) 2 (2,+ ∞) f′(x) + 0 - 0 + f(x) ↗ 极大值 ↘ 极小值 ↗ 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值. 22.解:(1)由题设a=2,c=1,从而:所以椭圆C的方程为: (2)(i)由题意得F(1,0),N(4,0). 设A(m,n),则B(m,-n)(n≠0),=1. ……① AF与BN的方程分别为:n(x-1)-(m-1)y=0, n(x-4)-(m-4)y=0. 设M(x0,y0),则有 n(x0-1)-(m-1)y0=0, ……② n(x0-4)+(m-4)y0=0, ……③ 由②,③得 x0=. 所以点M恒在椭圆G上. (ⅱ)设AM的方程为x=ty+1,代入=1得(3t2+4)y2+6ty-9=0. 设A(x1,y1),M(x2,y2),则有:y1+y2= |y1-y2|= 令3t2+4=λ(λ≥4),则 |y1-y2|= 因为λ≥4,0< |y1-y2|有最大值3,此时AM过点F. △AMN的面积S△AMN= 解法二: (Ⅰ)同解法一: (Ⅱ)(ⅰ)由题意得F(1,0),N(4,0). 设A(m,n),则B(m,-n)(n≠0), ……① AF与BN的方程分别为:n(x-1)-(m-1)y=0, ……② n(x-4)-(m-4)y=0, ……③ 由②,③得:当x≠. ……④ 由④代入①,得=1(y≠0). 当x=时,由②,③得: 解得与a≠0矛盾. 所以点M的轨迹方程为即点M恒在锥圆C上. (Ⅱ)同解法一.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2008 普通高等学校 招生 全国 统一 考试 文科 数学试题 答案 福建
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文