2023版高考数学一轮复习第二章函数及其应用2.9函数模型及其应用练习苏教版.doc
《2023版高考数学一轮复习第二章函数及其应用2.9函数模型及其应用练习苏教版.doc》由会员分享,可在线阅读,更多相关《2023版高考数学一轮复习第二章函数及其应用2.9函数模型及其应用练习苏教版.doc(8页珍藏版)》请在咨信网上搜索。
2.9 函数模型及其应用 考点一 利用图象刻画实际问题 1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图 根据该折线图,下列结论错误的是 ( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月份 D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,故选A. 2.如图所示,一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a(m)(0<a<12)、4 m,不考虑树的粗细,现在用16 m长的篱笆,借助墙角围成一个矩形的花园ABCD.设此矩形花园的面积为S(m2),S的最大值为f(a),若将这棵树围在花园内,则函数u=f(a)的图象大致是 ( ) 【解析】选C.设BC=x m,则DC=(16-x)m,由得a≤x≤12. 矩形面积S=x(16-x)≤=64. 当x=8时取等号.当0<a≤8时,u=f(a)=64; 当a>8时,由于函数在[a,12]上为减函数, 所以当x=a时,矩形面积取最大值Smax=f(a)=a(16-a). 3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是 ( ) 【解析】选A.若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D. 4.(2020·镇江模拟)某罐头加工厂库存芒果m(kg),今年又购进n(kg)新芒果后,欲将芒果总量的三分之一用于加工芒果罐头.被加工为罐头的新芒果最多为f1(kg),最少为f2(kg),则下列选项中最能准确描述f1,f2分别与n的关系的是 ( ) 【解析】选A.要使得被加工为罐头的新芒果最少,尽量使用库存芒果,即当≤m,n≤2m时,f2=0,当n>2m时,f2=-m=>0,对照图象舍去C,D; 要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当≤n,n≥时f1=,当>n,n<时f1=n,因为<2m,所以A符合题意. 判断函数图象与实际问题变化过程相吻合的两种方法 (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案. 考点二 已知函数模型求解实际问题 【典例】1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000 +20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是 ( ) A.100台 B.120台 C.150台 D.180台 2.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)= 已知某家庭2016年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m3 4元 二月份 25 m3 14元 三月份 35 m3 19元 若四月份该家庭使用了20 m3的煤气,则其煤气费为 ( ) 元 B.11元 C.10.5元 D.10元 3.某农场种植一种农作物,为了解该农作物的产量情况,现将近四年的年产量f(x)(单位:万斤)与年份x(记2015年为第1年)之间的关系统计如下: x 1 2 3 4 f(x) 4.00 5.62 7.00 8.86 则f(x)近似符合以下三种函数模型之一:①f(x)=ax+b;②f(x)=2x+a; ③f(x)=x2+b.则你认为最适合的函数模型的序号是________. 【解题导思】 序号 联想解题 1 由销售收入不小于总成本,想到销售收入≥总成本 2 由f(x)的解析式考虑用待定系数法求A,B,C的值 3 由三个模拟函数选择,想到逐个验证求解 【解析】1.选C.设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x- 3 000(0<x<240,x∈N*). 令f(x)≥0,得x≥150, 所以生产者不亏本时的最低产量是150台. 2.选A. 根据题意可知f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)= 所以f(20)=4+(20-5)=11.5. 3.若模型为②,则f(1)=2+a=4,解得a=2,于是f(x)=2x+2,此时f(2)=6,f(3)=10,f(4)=18,与表格中的数据相差太大,不符合;若模型为③,则f(1)=1+b=4,解得b=3,于是f(x)=x2+3,f(2)=7,f(3)=12,f(4)=19,此时,与表格中的数据相差太大,不符合; 若模型为①,则根据表中数据得 解得a=,b=,经检验是最适合的函数模型. 答案:① 求解已知函数模型解决实际问题的关键 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验. 1.(2020·中山模拟)据统计,一名工人组装第x件某产品所用的时间(单位:min)为f(x)=(A,c为常数).已知某工人组装第4件产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是 ( ) A.75,25 B.75,16 C.60,25 D.60,16 【解析】选D.由题意可知4<A,则 解得 2.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用PA=lg nA来记录A菌个数的资料,其中nA为A菌的个数,现有以下几种说法: ①PA≥1;②若今天的PA值比昨天的PA值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<PA<5.5(注:lg 2≈0.3).则正确的说法为________.(写出所有正确说法的序号) 【解析】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,所以nA==2×105,所以PA=lg nA=lg 2+5.又因为lg 2≈0.3,所以5<PA<5.5,故③正确. 答案:③ 考点三 建立数学模型解决实际问题 命 题 精 解 读 考什么:(1)阅读语言文字的能力,实际问题与数学问题之间的转化能力,常见的初等函数,对勾函数,分段函数的性质等问题. (2)考查数学运算、数学抽象、数学建模等核心素养. 怎么考:三种题型都有可能考查,考查学生的数学素养、数学建模思想、转化与化归思想等. 新趋势:以现实问题为载体,函数与实际问题、数与形、函数性质与最值交汇考查. 学 霸 好 方 法 形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型,“对勾”函数模型的单调区间及最值如下 (1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减. (2)当x>0时,x=时取最小值2, 当x<0时,x=-时取最大值-2. 初等函数模型及其应用 【典例】(2019·马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) ( ) A.2020年 B.2021年 C.2023年 D.2023年 【解析】选C.若2019年是第1年,则第n年全年投入的科研经费为1 300×1.12n万元,由1 300×1.12n>2 000,可得lg 1.3+nlg 1.12>lg 2,所以n×0.05>0.19,得n>3.8,即n≥4,所以第4年,即2023年全年投入的科研经费开始超过2 000万元,故选C. 每年投入的科研经费比上一年增长12%,说明每年经费是上一年的多少倍? 提示:说明每年经费是上一年的1.12倍. 对勾函数模型及其应用 【典例】为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k的值及f(x)的表达式. (2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值. 【解析】(1)当x=0时,C=8, 所以k=40, 所以C(x)=(0≤x≤10), 所以f(x)=6x+=6x+(0≤x≤10). (2)由(1)得f(x)=2(3x+5)+-10. 令3x+5=t,t∈[5,35], 则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),此时x=5, 因此f(x)的最小值为70. 所以隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元. 对勾函数求最值应注意什么? 提示:对勾函数求最值一定要注意该函数的单调性,然后再求最值. 分段函数模型及其应用 【典例】(2020·宿迁模拟)大气温度y(℃)随着距离地面的高度x(km)的增加而降低,当在高度不低于11 km的高空时气温几乎不变.设地面气温为22℃,大约每上升1 km大气温度降低6℃,则y关于x的函数关系式为________. 【解析】由题意知,y是关于x的分段函数,x=11为分界点,易得其解析式为y= 答案:y= 实际问题中分段函数的适用条件是什么? 提示:实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解. 1.要制作一个容积为16 m3,高为1 m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 【解析】设长方体容器底面矩形的长、宽分别为x m,y m,则y=, 所以容器的总造价为z=2(x+y)×1×10+20xy=20+20×16, 由基本不等式得, z=20+20×16 ≥40+320=480, 当且仅当x=y=4,即底面是边长为4 m的正方形时,总造价最低. 答案:480 2.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________. 【解析】①价格为60+80=140元,达到120元,少付10元,所以需支付130元. ②设促销前总价为a元,a≥120, 李明得到金额l(x)=(a-x)×80%≥0.7a,0≤x≤120,即x≤恒成立, 又最小值为=15,所以x最大值为15. 答案:①130 ②15 1.(2019·深圳模拟)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份 ( ) A.甲食堂的营业额较高 B.乙食堂的营业额较高 C.甲、乙两食堂的营业额相同 D.不能确定甲、乙哪个食堂的营业额较高 【解析】选A.设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可得,m+8a=m×(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×(1+x)4=,因为-=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故本年5月份甲食堂的营业额较高. 2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y与x的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资). 【解析】年销售总收入减去年总投资即可得到年利润,年总投资为(x+100)万元,故函数关系式为 y= 当0<x≤20时,x=16时函数值最大,且最大值为156; 当x>20时,y<140. 故年产量为16件时,年利润最大. 答案:y= 16 - 8 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 第二 函数 及其 应用 2.9 模型 练习 苏教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文