2022高考数学一轮复习课后限时集训35等比数列及其前n项和理北师大版.doc
《2022高考数学一轮复习课后限时集训35等比数列及其前n项和理北师大版.doc》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习课后限时集训35等比数列及其前n项和理北师大版.doc(6页珍藏版)》请在咨信网上搜索。
课后限时集训35 等比数列及其前n项和 建议用时:45分钟 一、选择题 1.等比数列x,3x+3,6x+6,…的第四项等于( ) A.-24 B.0 C.12 D.24 A [由x,3x+3,6x+6成等比数列,知(3x+3)2=x·(6x+6),解得x=-3或x=-1(舍去).所以此等比数列的前三项为-3,-6,-12.故第四项为-24,选A.] 2.(2022·日照一模)等比数列{an}的前n项和为Sn,a1+a3=,且a2+a4=,那么=( ) A.4n-1 B.4n-1 C.2n-1 D.2n-1 D [设等比数列{an}的公比为q,那么, 解得 ∴===2n-1.应选D.] 3.(2022·湖南湘东五校联考)在等比数列{an}中,a3=7,前三项之和S3=21,那么公比q的值是( ) A.1 B.- C.1或- D.-1或 C [当q=1时,a3=7,S3=21,符合题意;当q≠1时,得q=-.综上,q的值是1或-,应选C.] 4.等比数列{an}的前n项和为Sn=32n-1+r,那么r的值为( ) A. B.- C. D.- B [当n=1时,a1=S1=3+r, 当n≥2时,an=Sn-Sn-1=32n-1-32n-3 =32n-3(32-1)=8·32n-3=8·32n-2·3-1=·9n-1, 所以3+r=, 即r=-,应选B.] 5.(2022·鄂尔多斯模拟)中国古代数学著作?算法统综?中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还〞.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地〞.那么该人第五天走的路程为( ) A.6里 B.12里 C.24里 D.48里 B [记每天走的路程里数为{an},由题意知{an}是公比为的等比数列,由S6=378,得S6==378,解得a1=192,∴a5=192×=12(里).应选B.] 二、填空题 6.1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,那么的值________. [由题意得a1+a2=5,b=4,又b2与第一项的符号相同,所以b2=2.所以=.] 7.在14与之间插入n个数组成等比数列,假设各项之和为,那么此数列的项数为________. 5 [设此等比数列为{am},公比为q,那么该数列共有n+2项.∵14≠,∴q≠1.由等比数列的前n项和公式,得=,解得q=-, ∴an+2=14×n+2-1=,即n+1=,解得n=3,∴该数列共有5项.] 8.各项均为正数的等比数列{an}的前n项和为Sn,假设Sn=2,S3n=14,那么S4n=________. 30 [由题意知公比大于0,由等比数列性质知Sn,S2n-Sn,S3n-S2n,S4n-S3n,…仍为等比数列. 设S2n=x,那么2,x-2,14-x成等比数列. 由(x-2)2=2×(14-x), 解得x=6或x=-4(舍去). ∴Sn,S2n-Sn,S3n-S2n,S4n-S3n,…是首项为2,公比为2的等比数列. 又∵S3n=14,∴S4n=14+2×23=30.] 三、解答题 9.(2022·全国卷Ⅱ){an}是各项均为正数的等比数列,a1=2,a3=2a2+16. (1)求{an}的通项公式; (2)设bn=log2an,求数列{bn}的前n项和. [解] (1)设{an}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0. 解得q=-2(舍去)或q=4. 因此{an}的通项公式为an=2×4n-1=22n-1. (2)由(1)得bn=(2n-1)log22=2n-1,因此数列{bn}的前n项和为1+3+…+2n-1=n2. 10.(2022·全国卷Ⅰ)数列{an}满足a1=1,nan+1=2(n+1)an.设bn=. (1)求b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. [解] (1)由条件可得an+1=an. 将n=1代入得,a2=4a1,而a1=1,所以a2=4. 将n=2代入得,a3=3a2,所以a3=12. 从而b1=1,b2=2,b3=4. (2){bn}是首项为1,公比为2的等比数列. 由条件可得=,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列. (3)由(2)可得=2n-1,所以an=n·2n-1. 1.{an}为等比数列,数列{bn}满足b1=2,b2=5,且an(bn+1-bn)= an+1,那么数列{bn}的前n项和为( ) A.3n+1 B.3n-1 C. D. C [∵b1=2,b2=5,且an(bn+1-bn)=an+1, ∴a1(b2-b1)=a2,即a2=3a1, 又数列{an}为等比数列, ∴数列{an}的公比为q=3, ∴bn+1-bn==3, ∴数列{bn}是首项为2,公差为3的等差数列, ∴数列{bn}的前n项和为Sn=2n+×3=.应选C.] 2.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),假设数列{bn}有连续四项在集合{-53,-23,19,37,82}中,那么q等于( ) A.- B. C.- D. C [{bn}有连续四项在{-53,-23,19,37,82}中且bn=an+1,即an=bn-1,那么{an}有连续四项在{-54,-24,18,36,81}中.∵{an}是等比数列,等比数列中有负数项,∴q<0,且负数项为相隔两项,又∵|q|>1,∴等比数列各项的绝对值递增.按绝对值由小到大的顺序排列上述数值18,-24,36,-54,81,相邻两项相除=-,=-,-=-,=-,那么可得-24,36,-54,81是{an}中连续的四项.∴q=-.] 3.(2022·全国卷Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,那么a1a2…an的最大值为________. 64 [设等比数列{an}的公比为q,那么由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2=10,∴a1=8. 故a1a2…an=aq1+2+…+(n-1)=23n· 记t=-+=-(n2-7n), 结合n∈N*可知n=3或4时,t有最大值6. 又y=2t为增函数,从而a1a2…an的最大值为26=64.] 4.数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2). (1)求证:{an+1+2an}是等比数列; (2)求数列{an}的通项公式. [解] (1)证明:∵an+1=an+6an-1(n≥2), ∴an+1+2an=3an+6an-1=3(an+2an-1)(n≥2). ∵a1=5,a2=5, ∴a2+2a1=15, ∴an+2an-1≠0(n≥2), ∴=3(n≥2), ∴数列{an+1+2an}是以15为首项,3为公比的等比数列. (2)由(1)得an+1+2an=15×3n-1=5×3n, 那么an+1=-2an+5×3n, ∴an+1-3n+1=-2(an-3n). 又∵a1-3=2, ∴an-3n≠0, ∴{an-3n}是以2为首项, -2为公比的等比数列. ∴an-3n=2×(-2)n-1, 即an=2×(-2)n-1+3n. 1.如下图,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树〞.假设某勾股树含有1 023个正方形,且其最大的正方形的边长为,那么其最小正方形的边长为________. [由题意,得正方形的边长构成以为首项,以为公比的等比数列,现共得到1 023个正方形,那么有1+2+…+2n-1=1 023,∴n=10,∴最小正方形的边长为×9=.] 2.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展〞.将数列1,2进行“扩展〞,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;….设第n次“扩展〞后得到的数列为1,x1,x2,…,xt,2,并记an=log2(1·x1·x2·…·xt·2),其中t=2n-1,n∈N+,求数列{an}的通项公式. [解] an=log2(1·x1·x2·…·xt·2), 所以an+1=log2[1·(1·x1)·x1·(x1·x2)·…·xt·(xt·2)·2] =log2(12·x·x·x·…·x·22)=3an-1, 所以an+1-=3, 所以数列是一个以为首项,以3为公比的等比数列, 所以an-=×3n-1,所以an=. 6- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 课后 限时 集训 35 等比数列 及其 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文