2018版高考数学一轮复习第四章三角函数解三角形第6讲正弦定理和余弦定理理.doc
《2018版高考数学一轮复习第四章三角函数解三角形第6讲正弦定理和余弦定理理.doc》由会员分享,可在线阅读,更多相关《2018版高考数学一轮复习第四章三角函数解三角形第6讲正弦定理和余弦定理理.doc(5页珍藏版)》请在咨信网上搜索。
第6讲 正弦定理和余弦定理 一、选择题 1.在△ABC中,C=60°,AB=,BC=,那么A等于( ). A.135° B.105° C.45° D.75° 解析 由正弦定理知=,即=,所以sin A=,又由题知,BC<AB,∴A=45°. 答案 C 2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ). A.60° B.90° C.120° D.150° 解析 由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab, ∴c2=a2+b2+ab=a2+b2-2abcos C, ∴cos C=-,∴C=120°. 答案 C 3.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=,则S△ABC= ( ). A. B. C. D.2 解析 ∵A,B,C成等差数列,∴A+C=2B,∴B=60°. 又a=1,b=,∴=, ∴sin A==×=, ∴A=30°,∴C=90°.∴S△ABC=×1×=. 答案 C 4.在△ABC中,AC=,BC=2,B=60°,则BC边上的高等于 ( ). A. B. C. D. 解析 设AB=c,BC边上的高为h. 由余弦定理,得AC2=c2+BC2-2BC·ccos 60°,即7=c2+4-4ccos 60°,即 c2-2c-3=0,∴c=3(负值舍去). 又h=c·sin 60°=3×=,故选B. 答案 B 5.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=λ(λ>0),A=45°,则满足此条件的三角形个数是( ) A.0 B.1 C.2 D.无数个 解析 直接根据正弦定理可得=,可得sin B===>1,没有意义,故满足条件的三角形的个数为0. 答案 A 6.已知△ABC的面积为,AC=,∠ABC=,则△ABC的周长等于 ( ). A.3+ B.3 C.2+ D. 解析 由余弦定理得b2=a2+c2-2accos B,即a2+c2-ac=3.又△ABC的面积为acsin =,即ac=2,所以a2+c2+2ac=9,所以a+c=3,即a+c+b=3+,故选A. 答案 A 二、填空题 7.如图,△ABC中,AB=AC=2,BC=2,点D在BC边上,∠ADC=45°,则AD的长度等于________. 解析 在△ABC中,∵AB=AC=2,BC=2,∴cos C=,∴sin C=;在△ADC中,由正弦定理得,=, ∴AD=×=. 答案 8.已知△ABC的三边长成公比为的等比数列,则其最大角的余弦值为________. 解析 依题意得,△ABC的三边长分别为a,a,2a(a>0),则最大边2a所对的角的余弦值为:=-. 答案 - 9.在Rt△ABC中,C=90°,且A,B,C所对的边a,b,c满足a+b=cx,则实数x的取值范围是________. 解析 x===sin A+cos A=sin.又A∈,∴<A+<,∴<sin≤1,即x∈(1,]. 答案 (1,] 10.若AB=2,AC=BC,则S△ABC的最大值________. 解析 (数形结合法)因为AB=2(定长),可以令AB所在的直线为x轴,其中垂线为y轴建立直角坐标系,则A(-1,0),B(1,0),设C(x,y),由AC=BC, 得 = ,化简得(x-3)2+y2=8, 即C在以(3,0)为圆心,2为半径的圆上运动, 所以S△ABC=·|AB|·|yC|=|yC|≤2,故答案为2. 答案 2 三、解答题 11.叙述并证明余弦定理. 解 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC中,a,b,c为A,B,C的对边,有a2=b2+c2-2bccos A,b2=c2+a2-2cacos B,c2=a2+b2-2abcos C, 法一 如图(1), 图(1) a2=· =(-)·(-) =2-2·+2 =2-2||·||cos A+2 =b2-2bccos A+c2,即a2=b2+c2-2bccos A. 同理可证b2=c2+a2-2cacos B,c2=a2+b2-2abcos C. 法二 图(2) 已知△ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴建立直角坐标系,如图(2)则C(bcos A,bsin A),B(c,0), ∴a2=|BC|2=(bcos A-c)2+(bsin A)2 =b2cos2A-2bccos A+c2+b2sin2A =b2+c2-2bccos A. 同理可证b2=c2+a2-2cacos B, c2=a2+b2-2abcos C. 12.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C. (1)求tan C的值; (2)若a= ,求△ABC的面积. 解 (1)因为0<A<π,cos A=, 得sin A= =. 又cos C=sin B=sin(A+C)=sin Acos C+cos Asin C =cos C+sin C. 所以tan C=. (2)由tan C=,得sin C=,cos C=. 于是sin B=cos C=. 由a= 及正弦定理=,得c= . 设△ABC的面积为S,则S=acsin B=. 13. 在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sin A-sin B)+ysin B=csin C上. (1)求角C的值; (2)若a2+b2=6(a+b)-18,求△ABC的面积. 解 (1)由题意得a(sin A-sin B)+bsin B=csin C, 由正弦定理,得a(a-b)+b2=c2, 即a2+b2-c2=ab, 由余弦定理,得cos C==, 结合0<C<π,得C=. (2)由a2+b2=6(a+b)-18,得(a-3)2+(b-3)2=0, 从而得a=b=3, 所以△ABC的面积S=×32×sin =. 14. 在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,bsin-csin=a. (1)求证:B-C=; (2)若a= ,求△ABC的面积. (1)证明 由bsin-csin=a应用正弦定理,得sin Bsin-sin Csin=sin A, sin B-sin C=, 整理得sin Bcos C-cos Bsin C=1,即sin(B-C)=1. 由于0<B,C<π,从而B-C=. (2)解 B+C=π-A=,因此B=,C=. 由a= ,A=, 得b==2sin ,c==2sin , 所以△ABC的面积S=bcsin A= sinsin = cossin=. 5- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高考 数学 一轮 复习 第四 三角函数 三角形 正弦 定理 余弦 理理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文