圆的标准方程贾天保.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 标准 方程 天保
- 资源描述:
-
一石激起千层浪一石激起千层浪奥运五环奥运五环福建土楼福建土楼乐在其中乐在其中小憩片刻小憩片刻n 创设情境创设情境 引入新课引入新课yP0(x0,y0)0y0oyx形形数数解析几何的基本思想Oyx 圆在坐标系下有什么样的方程?解析几何的基本思想 高一数学备课组高一数学备课组 2012年年11月月30日日书 山 有 路 勤 为 径,学 海 无 崖 苦 作 舟少 小 不 学 习,老 来 徒 伤 悲 成功=艰苦的劳动+正确的方法+少谈空话天才就是百分之一的灵感,百分之九十九的汗水!天 才 在 于 勤 奋,努 力 才 能 成 功!2、确定圆有需要几个要素?、确定圆有需要几个要素?圆心圆心确定圆的位置确定圆的位置(定位定位)半径半径确定圆的大小确定圆的大小(定形定形)平面内与定点距离等于定长的点的集合(轨迹)是圆平面内与定点距离等于定长的点的集合(轨迹)是圆.1、什么是圆?、什么是圆?师生互动探究师生互动探究师生互动探究师生互动探究3 3、在直角坐标系中如何确定一个圆?、在直角坐标系中如何确定一个圆?Oxy C(a,b)二、探究新知,合作交流二、探究新知,合作交流 已知圆的圆心已知圆的圆心c(a,b)及圆的及圆的半径半径R,如何确定圆的方程?如何确定圆的方程?M探究一探究一RP=M|MC|=R一一.圆的标准方程圆的标准方程xy|MC|=R则则P=M|MC|=R 圆上所有点的集合圆上所有点的集合OCM(x,y)如图,在直角坐标系中,圆心如图,在直角坐标系中,圆心C的位置用坐标的位置用坐标(a,b)表示,半径表示,半径 r的大小等于圆上任意点的大小等于圆上任意点M(x,y)与与圆心圆心C(a,b)的距离的距离xyOCM(x,y)圆心圆心C(a,b),),半径半径r若圆心为若圆心为O(0,0),),则圆的方程为则圆的方程为:圆的标准方圆的标准方程程1圆圆(x2)2+y2=2的圆心的圆心A的坐标为的坐标为_,半径半径r=_.基础演练基础演练2 2圆圆(x+1)2(y-)2a2,(a 0)的圆心的圆心,半径是?半径是?加油加油3(例例1)已知圆的标准方程为已知圆的标准方程为(x2)2+(y+3)2=25 判判断点断点 ,是否在这个圆上是否在这个圆上 例例1 1 写出圆心为写出圆心为 ,半径长等于,半径长等于5的圆的方的圆的方程,并判断点程,并判断点 ,是否在这个圆上。是否在这个圆上。解:解:圆心是圆心是 ,半径长等于,半径长等于5的圆的标准方的圆的标准方程是:程是:把把 的坐标代入方程的坐标代入方程 左右两边相等,点左右两边相等,点 的坐标适合圆的方程,所以点的坐标适合圆的方程,所以点 在这个圆上;在这个圆上;典型例题典型例题 把点把点 的坐标代入此方程,左右两边的坐标代入此方程,左右两边不相等,点不相等,点 的坐标不适合圆的方程,所以点的坐标不适合圆的方程,所以点 不不在这个圆上在这个圆上怎样判断点怎样判断点 在圆在圆 内呢?圆上?还是在圆外呢?内呢?圆上?还是在圆外呢?CxyoM1M2M3知识探究二:点与圆的位置关系知识探究二:点与圆的位置关系 探究:在平面几何中,如何确定点与圆的位置关探究:在平面几何中,如何确定点与圆的位置关 系?系?M MO O|OM|OM|r r点在圆内点在圆上点在圆外(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2r r2 2时时,点点M M在圆在圆C C外外.点与圆的位置关系点与圆的位置关系:知识点二:点与圆的位置关系知识点二:点与圆的位置关系M MO OO OM MO OM M A在圆外在圆外 B在圆上在圆上 C在圆内在圆内 D在圆上或圆外在圆上或圆外m 1练习:练习:点点P(,5)P(,5)与圆与圆x x2 2+y y2 2=2525的位置关系的位置关系()圆心为圆心为 半径长等于半径长等于5的圆的方程的圆的方程 ()A (x 3)2+(y 1)2=25 B (x 3)2+(y+1)2=25 C (x 3)2+(y+1)2=5 D (x+3)2+(y 1)2=5 变式演练变式演练变式一变式一 圆心在圆心在C(8,-3),且经过点且经过点M(5,1)的的 圆的方程?圆的方程?加油加油尝试高考尝试高考(20122012重庆高考题)重庆高考题)变式二变式二 以点(以点(2,-1)为圆心且与直线)为圆心且与直线 3x-4y+5=0相切的圆的方程为相切的圆的方程为 ()A(x 2)2+(y+1)2=3 B(x+2)2+(y-1)2=3 C(x 2)2+(y+1)2=9 D(x+2)2+(y 1)2=3 ABC的三个顶点的坐标分别是的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆求它的外接圆的标准方程的标准方程.讨论变式三:变式三:例例2 2 的三个顶点的坐标分别的三个顶点的坐标分别A A(5,1),(5,1),B B(7,(7,3)3),C C(2,(2,8)8),求它的外接圆的方程,求它的外接圆的方程 解解:设所求圆的方程是:设所求圆的方程是 (1)因为因为A(5,1),B(7,3),C(2,8)都在圆上,所以都在圆上,所以它们的坐标都满足方程(它们的坐标都满足方程(1)于是)于是待定系数法待定系数法所求圆的方程为所求圆的方程为A(5,1)EDOC(2,-8)B(7,-3)yxR哈哈!我会了哈哈!我会了!几何方法几何方法L1L27 例例3 已知圆心为已知圆心为C的圆经过点的圆经过点A(1,1)和和 B(2,-2),且圆心,且圆心C在直线在直线l:x-y+1=0上上,求求 圆心为圆心为C的圆的标准方程的圆的标准方程.分析:分析:已知道确定一个圆只需要确定圆心的位置与半径大小已知道确定一个圆只需要确定圆心的位置与半径大小.圆圆心为心为C C 的圆经过点的圆经过点A A(1,1)(1,1)和和B B(2,(2,2)2),由于圆心,由于圆心C C 与与A A,B B 两两点的距离相等,所以圆心点的距离相等,所以圆心C C 在线段在线段AB AB 的垂直平分线上的垂直平分线上.又圆心又圆心C C 在直线在直线l l 上,因此圆心上,因此圆心C C是直线是直线l l与直线与直线 的交点,半径长等于的交点,半径长等于|CACA|或或|CBCB|讨论:讨论:一共有几种方法一共有几种方法?圆心:两条直线的交点圆心:两条直线的交点半径:圆心到圆上一点半径:圆心到圆上一点xyOCA(1,1)B(2,-,-2)弦弦ABAB的垂的垂直平分线直平分线 例例3 已知圆心为已知圆心为C的圆经过点的圆经过点A(1,1)和和B(2,2),且圆心且圆心C在直线在直线 l:x y+1=0上上,求圆心为,求圆心为C的圆的标的圆的标准方程准方程D解解:A(1,1),B(2,-2)例例3 3 己知圆心为己知圆心为C C的圆经过点的圆经过点A(1,1)A(1,1)和和B(2,-2),B(2,-2),且且圆心在直线圆心在直线l:x-y+1=0l:x-y+1=0上上,求圆心为求圆心为C C的圆的标准方的圆的标准方程程.即:即:x-3y-3=0圆心圆心C(-3,-2)例例3 3 己知圆心为己知圆心为C C的圆经过点的圆经过点A(1,1)A(1,1)和和B(2,-2),B(2,-2),且且圆心在直线圆心在直线l:x-y+1=0l:x-y+1=0上上,求圆心为求圆心为C C的圆的标准方的圆的标准方程程.圆经过圆经过A(1,1),B(2,-2)解解2:设圆设圆C的方程为的方程为圆心在直线圆心在直线l:x-y+1=0上上待定系数法待定系数法O圆心C(a,b),半径r特别的特别的若圆心为若圆心为O(0,0),则圆的标准方程为则圆的标准方程为:小结小结:一、二二、点与圆的位置关系:点与圆的位置关系:三三、求圆的标准方程的方法:求圆的标准方程的方法:xyCM2 2 几何方法几何方法:数形结合:数形结合1 1 代数方法代数方法:待定系数法求:待定系数法求今天有什今天有什么收获么收获?圆的标准方程圆的标准方程(1)点)点P在圆上在圆上(2)点)点P在圆内在圆内(3)点)点P在圆外在圆外作业布置作业布置P120 练习1、2、3P124 习题A组1、2 将标准方程展开,是一个什么形式?将标准方程展开,是一个什么形式?它有什么特点?它有什么特点?2012.11.30展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




圆的标准方程贾天保.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4380317.html