2022高考数学年(文)数列求和及简单应用专题练习(四).pdf
《2022高考数学年(文)数列求和及简单应用专题练习(四).pdf》由会员分享,可在线阅读,更多相关《2022高考数学年(文)数列求和及简单应用专题练习(四).pdf(8页珍藏版)》请在咨信网上搜索。
1/8 20172017 高考高考数学(文)数学(文)专题练习专题练习 数列求和及简单应用数列求和及简单应用 答答 案案 15ABBAD 6D 763 844nn 9解:(1)由2222120nnSnnSnn,得2210nnSnnS,由2002nnnaSSnn,可知,故。当2212212121nnnnaSSnnnnn时,;当1n,113aS,符合上式,则数列 na的通项公式为21nan(2)依题意,15242222nnnnnannb,则1221114222()nnnnbn,设242nnTbbb,故231123104444nnnT,2123141444nnnT 两式相减,得 2211111314444nnnnT =1111141414nnn 1()131434nn,2/8 故113()1494nnnT 10B 115 100 12解:(1)证明:因为141nnna aS,所以12131nnnaaS,所以12114nnnnnaaa aa,因为10na,所以24nnaa(2)解:当1n 时,12141a aa,因为11a,所以23a,由24nnaa,可知数列 na的奇数项与偶数项分别为等差数列,公差为 4,首项分别为 1,3 所以当*(21)nkkN时,211 414321nkaakkn ;当*)2(nk kN时,23414121nkaakkn 所以21nan 13解:(1)设 na的公比为 q,因为15S,3S,23S成等差数列,所以312253SSS,即2111111253aa qa qaaa q,化简得2260qq,3/8 解得322qq 或 由已知,2q,所以2nna (2)由222nnnnblog ablogn得 所以12212111()nnncb bn nnn 所以111112 1223()1nTnn=1(2 11)n 所以2244145nnTnnnnn,因为445259nnnn,当且仅当42nnn即时等号成立,所以22495nn 所以实数的取值范围是2,)9 4/8 20172017 高考高考数学(文)数学(文)专题练习专题练习 数列求和及简单应用数列求和及简单应用 解解 析析 1解析:依题意,a1=2,a2=3,a3=a2-a1=3-2=1,a4=a3-a2=1-3=-2,a5=a4-a3=-2-1=-3,a6=a5-a4=-3-(-2)=-1,a7=a6-a5=-1-(-3)=2,a8=a7-a6=2-(-1)=3,所以数列an是周期为 6 的周期数列,又因为 2 016=6 336,所以 S2 016=(2+3+1-2-3-1)336=0,故选 A 2解析:因为 an=ncos,所以 a2k-1=(2k-1)cos=0,kN*。a2k=2kcos k=2k(-1)k。则 S2 016=a2+a4+a2 016=2(-1+2)+(-3+4)+(-1 007+1 008)=1 008,故选 B 3解析:因为 an+1+2an=0,所以数列an是公比为-2 的等比数列,又因为 a2=2,所以 a1=(0-a2)=-1,所以所求值为=-,故选 B 4解析:因为 an+1-an=2,5/8 所以数列an是等差数列,且公差是 2,bn是等比数列,且公比是 2 又因为 a1=1,所以 an=a1+(n-1)d=2n-1 所以=b2n-1=b1 22n-2=22n-2 设 cn=,所以 cn=,所以=4,所以数列cn是等比数列,且公比为 4,首项为 1 由等比数列的前 n 项和公式得,其前 10 项的和为=(410-1)。故选 A 5解析:S11=1-5+9-13+17-21+33-37+41,=(1-5)+(9-13)+(17-21)+(33-37)+41,=(-4)5+41=21,故选 D 6解析:由 an+2=2an+1-an得,an+2+an=2an+1,所以数列an是等差数列,又 a5=4-a3,则 a5+a3=4,所以 S7=14,故选 D 7解析:因为 Sn=2an-1,所以 n2 时,an=Sn-Sn-1=(2an-1)-(2an-1-1)=2an-2an-1 所以 an=2an-1;当 n=1 时,S1=a1=2a1-1,解得 a1=1,所以an是首项为 1,公比为 2 的等比数列,所以 S6=63 答案:63 8解析:因为=所以=2n-1,所以=(-),6/8 所以 Tn=(1-+-+-)=(1-)=。答案:9 解:(1)由-(n2+2n-1)Sn-(n2+2n)=0,得Sn-(n2+2n)(Sn+1)=0,由 an0,可知 Sn0,故 Sn=n2+2n。当 n2 时,an=Sn-Sn-1=(n2+2n)-(n-1)2+2(n-1)=2n+1;当 n=1 时,a1=S1=3,符合上式,则数列an的通项公式为 an=2n+1(2)依题意,bn=,则 b2n=(n-1)()n-1,设 Tn=b2+b4+b2n,故 Tn=0+,4Tn=1+。两式相减,得 3Tn=1+-=-=(4-),故 Tn=(4-)。能力提升能力提升 10解析:因为=1+=1+-,所以 Sn=1+1-+1+-+1+-=n+1-,因为=1+,7/8 所以 T10=1+1+1+=10+=11-,因为 SnT10+1 013,所以 n+1-11-+1 013=1 024-,而 1 025-1 024-,1 024-=1 024-。故 n 的最小值为 1 024,故选 B 11解析:当 n 为奇数时,an+2-an=1,得数列an的奇数项组成首项为 1公差为 1 的等差数列,故 a1+a3+a199=100 1+1=5 050;当 n 为偶数时,an+2+an=1,故 a2+a4+a6+a200=50.所以 S200=5 050+50=5 100.答案:5 100 12 解:(1)证明:因为 anan+1=4Sn-1,所以 an+1an+2=3Sn+1-1,所以 an+1an+2-anan+1=4an+1,因为 an+10,所以 an+2-an=4(2)解:当 n=1 时,a1a2=4a1-1,因为 a1=1,所以 a2=3,由 an+2-an=4,可知数列an的奇数项与偶数项分别为等差数列,公差为 4,首项分别为 1,3 所以当 n=2k-1(kN*)时,an=a2k-1=1+4(k-1)=4k-3=2n-1;当 n=2k(kN*)时,an=a2k=3+4(k-1)=4k-1=2n-1 所以 an=2n-1 8/8 创新选做创新选做 13解:(1)设an的公比为 q,因为 5S1,S3,3S2成等差数列,所以 2S3=5S1+3S2,即 2(a1+a1q+a1q2)=5a1+3(a1+a1q),化简得 2q2-q-6=0,解得 q=2 或 q=-由已知,q=2,所以 an=2n(2)由 bn=log2an得 bn=log22n=n 所以 cn=2(-)所以 Tn=2(1-+-+-)=2(1-)所以 Tn(n+4)=,因为 n+52+5=9,当且仅当 n=即 n=2 时等号成立,所以 所以实数的取值范围是,+)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 学年 数列 求和 简单 应用 专题 练习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文