2017学年浙江省台州中考数学年试题.pdf
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 学年 浙江省 台州 中考 试题
- 资源描述:
-
1/12 江苏省苏州市 2017 年中考试卷 数学答案解析 一、选择题 1.【答案】B【解析】解:原式21)72(1 7)3 .【提示】负数除以正数时,负号提前,再作21 7.【考点】有理数的除法 2.【答案】C【解析】解:平均数是25561(557)【提示】用所有数据的和除以 5.【考点】算术平均数 3.【答案】D【解析】解:精确到0.01,就是精确到百分位,而2.026的千分位是 6,故四舍五入2.0262.03【提示】要精确到哪一位,就看这一位的后面的数进行四舍五入【考点】近似数和有效数字 4.【答案】A【解析】解:判别式:2242)4 1(0back ,解得1k 【提示】一元二次方程有两个相等的实数根时,判别式240bac【考点】一元二次方程根的判别式 5.【答案】C【解析】解:样本中的全校持“赞成”意见的学生所占百分比约:10030100%70%100,则估计全校持“赞成”意见的学生人数约为2400 70%()1680人【提示】已知总人数为 2400 名学生,要求出全校持“赞成”意见的学生所占百分比;通常用样本中所占的百分比来估计,可以根据已知条件求出样本中的全校持“赞成”意见的学生所占百分比【考点】样本估计总体 6.【答案】D【解析】解:将点,()A m n代入一次函数3yxb中,可得3mbn,则有3mnb,因为32mn,2b 【提示】将点,()A m n代入一次函数3yxb中,可得3mbn,则可得3mnb,代入32mn,-在-此-卷-上-答-题-无-效-2/12 即可解答【考点】一次函数图像与系数的关系 7.【答案】B【解析】解:正五边形ABCDE每个内角的度数为:(52)1805108oo 因为ABAE,所以1180108)36(2ABEooo【提示】由多边形内角和,先求出每个内角的度数,由正多边形的性质:每个内角相等,每条边相等,即ABAE,由等角对等边可求得ABE【考点】正多边形的内角和定理,等腰三角形的性质 8.【答案】A【解析】解:将()2,0,代入21yax,可得=410a,即14a 则一元二次方程可写为:1(2)104x,则2(2)4x,则1204xx,【提示】二次函数中只有一个未知系数,将()2,0,代入二次函数可解出a的值,代入二次方程解答即可【考点】二次函数,一元二次方程的解 9.【答案】C【解析】解:在RtABC中,9056ACBA oo,所以905634ABCooo 因为弧CE 弧CD,所以268COEABC o 在四边形OCFE中,因为OCAFOEEF,所以18018068112FCOEoooo【提示】直角三角形两个锐角互余,则求出ACB;再根据等弧所对的圆周角是圆心角的一半可得2COEABC;在四边形OCFE中,内角和为 360 度,而OCAFOEEF,则F与COE互补,即可求得【考点】圆周角定理,多边形内角和定理 10.【答案】A【解析】解:过点E作 EIAB,过 P 作 PHAB 于 H,连结 DF,则 DFAB,由平移的性质可得 PP=AB,PP/AB,又在菱形ABCD中,ABCDABCD,PPCDPPCD,四边形CDPP是平行四边形,已知菱形的边长为 8,60A o,则8 sin604 3DF o F为AB的中点,则824AF;已知60AEFAD o,则30AFEo,则2AE,3sin602=32EIAEo,P是EF的中点,且易知道PHEI,所以332=2PH,384 328 32PP CDS 3/12 【提示】依据题意四边形CDPP是平行四边形,平行四边形ABCD的高为DF,则CDPP的高为DFPH,之后按平行四边形的面积公式计算即可【考点】平移的性质,菱形的性质,平行四边形的判定,勾股定理,解三角形 二、填空题 11.【答案】4a【解析】解:222 24()aaa【提示】底数不变,括号外的指数与a的指数相乘得的积作为底数的新指数【考点】幂的运算 12.【答案】50【解析】解:因为OC是AOB的平分线,所以2 1 50AOB o,因为EDOB,所以50AEDAOBo【提示】由角平分线的定义,不难得出2 1 50AOB o;而EDOB,两直线平行,同位角相等,可得50AEDAOBo【考点】平行线的性质,角平分线的性质 13.【答案】8【解析】解:一共有 11 个数据,所以中位数是把这组数据从小到大排列的第 6 个数据,而156,故第6 个数为 8,即中位数为 8【提示】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;这里的数据是奇数个,故中位数是它们排列后的最中间的那个数据【考点】条形统计图,中位数 14.【答案】2(21)a【解析】解:原式2222)41(21)aaa 4/12 【提示】在没有公因式的情况下,考虑使用公式法因式分解;这里运用完全平方公式【考点】整式的因式分解 15.【答案】13【解析】解:如下图,有两种涂的方法,使图案是轴对称图案,打“”的方格;则概率2163p 【提示】一共有 6 种涂法,而使其能为轴对称图案的只有 2 种方法,即可求得概率【考点】轴对称性质 16.【答案】12【解析】解:因为2180BOCAOCBOCAOC o,所以3180AOCo,解得60AOCo,又因为OAOC,所以AOC是等边三角形,即3AOAC,则弧AC的长为60 3=180,则圆锥底面的半径为12=2【提示】用扇形AOC做成圆锥,要求圆锥底面的半径,则要求出圆锥的底面周长,即为扇形弧AC的长,根据弧长公式180n r,则要求出圆心角AOC和圆的半径,根据2180BOCAOCBOCAOC o,即可求出60AOCo,从而可得AOC是等边三角形,即3AOAC,即可解答【考点】等边三角形的判定,圆锥的相关计算 17.【答案】2【解析】解:如图,过点C作CDAB于D,在RtACD中,906030CADooo,则sin302(km)CDACo;在RtBCD中,904545CBDooo,则=2 2sin45CDBC o;由所用时间相等,则1122422 2vsACvsBC 5/12 【提示】由路程公式可得,在所有时间相等时,则1122vsACvsBC,因为AC已知,即要求出BC的长;根据题意构造直角三角形,过点C作CDAB于D,在RtACD,根据特殊角的正弦值求出CD;在RtBCD中,根据特殊角的三角函数求出BC,即可解答【考点】直角三角形的应用,方向角 18.【答案】745【解析】解:连接AG,设ABBGx,则4xDGx,在RtADG中,由AGADDG,得(x)=7+(x-4),整理得 8650 xx,12513xx,(舍)5ABAB,在RtABC中,22225774ACABBC 连接ACAC,由旋转的性质可得ABBACC,745CCACBBAB 【提示】由旋转的性质可得ABBACC,即旋转相似,则CCACBBAB;AC和AB求出其中一个,就能求出另外一个,连接AG,由勾股定理AGADDG构造方程,求出AB即可【考点】矩形的性质,旋转的性质,相似三角形的判定与性质,勾股定理 三、解答题 19.【答案】2【解析】解:原式1 2 12 【提示】按运算顺序去绝对值符号,开平方,一个数的 0 次幂,可以同时计算,再按从左到右的顺序算【考点】实数的计算 20.【答案】34x 6/12 【解析】解:解14x,得3x;解21)36(xx,得2236xx,移项合并,得4x ,解得,则不等式组的解集是34x【提示】分别解出两个不等式的解集,得3x 和4x,由大小,小大取中间,取出解集【考点】一元一次不等式的解法 21.【答案】33【解析】解:原式3(3)(3)31123232xxxxxxxxx,当32x 时,原式33【提示】分式运算里有括号的先算括号里的,分子和分母中能因式分解的要因式分解,再作加减法或乘除法【考点】分式的化简及求值 22.【答案】(1)125yx(2)10kg【解析】(1)解:根据题意,设y与x的函数表达式为ykxb 当20 x 时,2y,得220kb当50 x 时,8y,得850kb 解方程组202508kbkb解得152kb,所求函数表达式为125yx.(2)解:当0y 时,1205x,解得10 x,所以旅客最多可免费携带行李10kg【提示】(1)设ykxb,将20 x,2y;50 x,8y 这两组值代入,列出方程组解出k和b的值即可(2)免费携带,即花费0y 时,求x的值【考点】一次函数 23.【答案】(1)8,3(2)144(3)23【解析】解:(1)4 10%()40人;40 30%48m,4079 84225)3(n (2)79)40 3601(44oo(3)将选航模项目的 2 名男生编上号码 1,2,将 2 名女生编上号码 3,4.用表格列出所有可能出现的结果:7/12 由表格可知,共有 12 种可能出现的结果,并且它们都是等可能的,其中“1 名男生.1 名女生”有 8 种可能 则p(1 名男生,1 名女生)82123【提示】(1)由统计表可得选航模的人数有2(2)4人,由扇形统计图可得选航模所占百分比为 10%,则可得初一(1)班总人数,由扇形统计图可得选“3D 打印”的占30%,则可得40 30%4m;n总人数所有已知的人数(2)求出选“机器人”所占百分比,再乘以 360 度即可得到(3)把 2 男生和 2 女生分别编号,用列表法或树状图法列出即可,得到所有可能的结果数,找出 1 名男生,1 名女生的结果数,运用概率公式解答即可【考点】统计表,扇形统计图,树状图 24.【答案】(1)答案见解析(2)69o【解析】(1)证明:因为1212ADECBDE ,所以CBDE 在AEC和BED中,=CBDEABAEBE,所以ECD(2)解:因为ECD,所以CEDE,1(18042)692BDECooo【提示】(1)根据ADE的两种表示方法:12CBDE ,又12,所以CBDE根据已知的条件,即可由“AAS”判定全等三角形;(2)由ECD,可得边相等,则由等腰三角形的底角相等可得1(18042)692BDECooo 【考点】全等三角形的判定与性质,等腰三角形的性质 25.【答案】(1)5k (2)972OC 【解析】(1)解:过点C作CDAB于E,因为ACBC,所以2AEBE,在RtBCE中,8/12 222253222CEBCBE,则点C的横坐标为C,即5,22C 将点5,22C代入kyx,所以5k (2)设A点的坐标为(),0m,则DC,两点的坐标分别为33,222mm ,因为点DC,都在kyx的图像上,所以33222mm,所以6m,所以点C的坐标为9,22,作CFx轴,垂足为F在RtOCF中,22997222OC 【提示】(1)求点C的坐标,过点C作CDAB于E,则2AEBE,由勾股定理求出CE,则求得点C的坐标,代入反比例函数即可解得(2)求点C的坐标,设A点的坐标为(),0m,由52BDBC,可得D的纵坐标为32AD,则33,222D mC m,由点DC,都在kyx的图像上,可求出m的值,即而求出点C的坐标,根据勾股定理即可求OC的长【考点】反比例函数的图像及其性质,等腰三角形的性质,勾股定理 26.【答案】(1)6BC (2)121220tt,【解析】(1)解:作ATBD,垂足为T,由题意得,2485ABAT,在=RtABT中,222ABBTAT,9/12 325BT tanADATABDABBT,6AD,即6BC (2)解:在图中,连接12PP,过12PP,分别作BD的垂线,垂足为12QQ,则1122PQPQ,在图中,线段MN平行于横轴,12dd,即1122PQPQ,12PPBD,12CPPCBD,12CPCPCBCD,即1268CPCP 又127CPCP,1234CPCP,设MN,的横坐标分别为12tt,由题意得,11221516CPtCPt,121220tt,【提示】(1)点P在A点上时,d有最大值为245,故可作ATBD,垂足为T,当点P从A点运动到B时,刚好0d,则8AB,根据勾股定理求得BT,则由tanADATABDABBT可求出AD(2)首先观察图可得点M和点N的纵坐标相等,即此时12ddd1=d2,故可过12PP,分别作BD的垂线,垂足为12QQ,则1122PQPQ,且1122PQPQ,从而得到12PPBD,12CPPCBD,通过相似边求出1CP与2CP的数量关系,再由127CPCP,可解得1234CPCP,从而求出时间1t和2t【考点】矩形的性质及判定,三角函数,勾股定理,相似三角形的性质,平行线分线分线段成比例定理 27.【答案】(1)答案见解析(2)答案见解析(3)答案见解析【解析】(1)证明:AB是圆O的直径,90ACBo,DEAB,90DEOo,DEOACB,ODBC,DOEABC,DOEABC(2)证明:DOEABC,ODEA,A和BDC是弧BC所对的圆周角,ABDC,ODEBDC,ODFBDE 10/12 (3)解:因为DOEABC,所以214DOEABCSODSAB,即144DOEABCSSS 因为OAOB,所以12BOCABCSS,即12BOCSS,因为1227SS,2112BOCDOEDBEDBESSSSSSS,所以112DBESS,所以12BEOE,即2233OEOBOD,所以2sinsin3AODE【提示】(1)易证90DEOACBo和DOEABC,根据“有两对角相等的两个三角形相似”判定DOEABC(2)由DOEABC,可得ODEA,由A和BDC是弧BC所对的圆周角,则ABDC,从而通过角的等量代换即可证得(3)由ODEA,可得sinsinAODE;而由DOEABC,可得214DOEABCSODSAB,即144DOEABCSSS,即12B O CA B CSS,又因为1227SS,2112BOCDOEDBEDBESSSSSSS,则可得112DBESS,可求得OE与OB的比值【考点】圆周角定理,相似三角形的判定及其性质,平行线的性质,解三角形 28.【答案】(1)3c (2)点F的坐标为(0,)2(3)Q点的坐标为115,24 点Q的坐标为115,24和315,24【解析】(1)解:CDx轴,2CD,抛物线对称轴为直线l:1x,12b,则2b.0,()OBOCCc,B点的坐标为(),0c,202ccc,解得3c 或0c(舍去),3c (2)解:由(1)可得抛物线解析式为223yxx,则4(1,)E 设点F的坐标为(0,)m,对称轴为直线l:1x,点F关于直线l的对称点F的坐标为(2,)m 直线BE经过点()()3,01,4BE,利用待定系数法可得直线BE的表达式26yx,点F在BE上,11/12 2262m,即点F的坐标为(0,)2(3)解:存在点Q满足题意设点P坐标为(),0n,则21323PAnPBPMnPNnn,作QRPN,垂足为R,PQNAPMSS,211)3)23)21(2nnnnQR,1QR,点Q在直线PN的左侧时,Q点的坐标为2(1,4)nnnR,点的坐标为2(,4)n nnN,点的坐标为2,2)3(n nn,在RtQRN中,22(123)NQn,32n 时,NQ取最小值 1,此时Q点的坐标为115,24,点Q在直线PN的右侧时,Q点的坐标为2(1,4)nnnR,同理22(121)NQn,12n 时,NQ取最小值 1,此时Q点的坐标为315,24 综上所述,满足题意的点Q的坐标为115,24和315,24 【提示】(1)因为CDx轴,所以C与D的纵坐标相等,即C与D关于抛物线的对称轴对称,则可得对称轴是直线1lx:,从而由2bxa 代入a的值,求出b;又由OBOC,可得,()0Bc,代入二次函数解析式,求出c的值即可(2)设点F的坐标为(0,)m关于直线1x 的对称点为(2,)m,则求出BE的解析式,将(2,)m代入解出m的值即可(3)可设0(),P n,用n可表示出21323PAnPBPMnPNnn,作QRPN,垂足为R,12/12 由PQNAPMSS,可列出方程求出1QR,分类讨论点Q在直线PN的左侧和Q在直线PN的右侧时即可 【考点】二次函数的图像及其性质,待定系数法求解析式,轴对称的性质展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2017学年浙江省台州中考数学年试题.pdf



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4358546.html