复合函数的定义域详细讲义及练习详细答案.doc
《复合函数的定义域详细讲义及练习详细答案.doc》由会员分享,可在线阅读,更多相关《复合函数的定义域详细讲义及练习详细答案.doc(14页珍藏版)》请在咨信网上搜索。
1、复合函数的定义域详细讲义及练习详细答案 复合函数一, 复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=fg(x),其中u称为中间变量。二, 对高中复合函数的通解法综合分析法1、 解复合函数题的关键之一是写出复合过程例1:指出下列函数的复合过程。(1)y=2-x2 (2)y=sin3x (3)y=sin3x (4)y=3cos1-x2VbYKu。解:() y=2-x2是由y=u,u=2-x2复合而成的。 (2)y=sin3
2、x是由y=sinu,u=3x复合而成的。 (3)y=sin3x=(sinx)-3 y=sin3x是由y=u-3,u=sinx复合而成的。(4)y=3cos1+x2是由y=3cosu,u=r,r=1+x2复合而成的。2、解复合函数题的关键之二是正确理解复合函数的定义。看下例题:例:已知f(x+3)的定义域为1、2,求f(2x-5) 的定义域。经典误解:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。由g(x),G(x)得:u2=2x-11 即:y=f(u2),u2=2x-11 f(u1)的定义域为1、2x2
3、-92x-11-6 即:y=f(u2)的定义域为-9、-6f(2x-5)的定义域为-9、-6经典误解:解:f(x+3)的定义域为1、2 1x+32 -2x-1 -42x-2 -92x-5-7 f(2x-5)的定义域为-9、-7(下转2页)注:通过以上两例误解可得,解高中复合函数题会出错主要原因是对复合函数的概念的理解模棱两可,从定义域中找出“y”通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=fg(x),其中u称为“中间变量”。从以上误解中找出解题者易将f(x+3)的定义域理解成(x+3)的取值范围,从而导致错误。而从定义中可以看出u仅仅是中间变量
4、,即u既不是自变量也不是因变量。复合函数的定义域是指y=f(u),u=g(x)中u=g(x)中的x的取值范围,即:f(x+3)是由f(u),u=x+3复合而成的复合函数,其定义域是x的取值范围。VFIDd。正确解法:解:f(x+3)是由y=f(u1),u1=x1+3(1x2)复合而成的。 f(2x-5)是由y=f(u2),u2=2x2-5复合而成的x12 4u15 4u25 42x2-55 2x25 f(2x-5)的定义域为、5结论:解高中复合函数题要注意复合函数的分层,即u为第一层,x为第二层,一、二两层是不可以直接建立关系的,在解题时,一定是同层考虑,不可异层考虑,若异层考虑则会出现经典误
5、解与的情况。R7TqC。三、高中复合函数的题型(不包括抽象函数)题型一:单对单,如:已知f(x)的定义域为-1,4,求f(x2)的定义域。题型二:多对多,如:已知f(x+3)的定义域为、,求f(2x-5)的定义域。(下转3页)题型三:单对多,如:已知f(x)的定义域为0、1,求f(2x-1)的定义域。题型四:多对单,如:已知f(2x-1)的定义域为0、1,求f(x)的定义域。注:通解法综合分析法的关键两步:第一步:写出复合函数的复合过程。 第二步:找出复合函数定义域所真正指代的字母(最为关键)下面用综合分析法解四个题型题型一:单对单:例3:已知f(x)的定义域为-1、4,求f(x2)的定义域。
6、 第1步:写出复合函数的复合过程:f(x2)是由y=f(u),u=x22复合而成的。(由于要同层考虑,且u与x的取值范围相同,故可这样变形)f(x)是由y=f(u),u=x1复合而成的。iHrCz。 f(x)的定义域为-1、4 第2步:找出复合函数定义域的真正对应-1x14 即-1u4 又u=x22 -1x224(x2是所求f(x2)的定义域,此点由定义可找出) -2x22 f(x2)的定义域为(-2,2)结论:此题中的自变量x1,x2通过u联系起来,故可求解。题型三:单对多:例4:已知f(x)的定义域为0,1,求f(2x-1)的定义域。 第1步:写出复合函数的复合过程:f(x)是由y=f(u
7、),u=x1复合而成的。 f(2x-1)是由y=f(u),u=2x2-1复合而成. 第2步:找出复合函数定义域的真正对应:0x11 0u1 02x2-11 x21 f(2x-1)的定义域为,1结论:由此题的解答过程可以推出:已知f(x)的定义域可求出y=g(x)的定义域。 下转4页题型四:多对单:如:例5:已知f(2x-1)的定义域为0、1,求f(x)的定义域。 第1步:写出复合函数的复合过程:f(2x-1)是由f(u),u=2x1-1复合而成的。 f(x)是由f(u),u=x2复合而成的。 第2步:找出复合函数定义域对应的真正值:0x11 02x12 -12x1-11 -1u1 -1x21
8、f(x)的定义域为-1、1结论:由此题的解答过程可以推出:已知y=fg(x)的定义域可求出f(x)的定义域。小结:通过观察题型一、题型三、题型四的解法可以看出,解题的关键在于通过u这个桥梁将x1与x2联系起来解题。81A29。题型二:多对多:如例6:已知f(x+3)的定义域为1、2,求f(2x-5)的定义域。解析:多对多的求解是比较复杂的,但由解题型三与题型四的结论:已知 f(x)的定义域可求出y=fg(x)的定义域”已知y=fg(x)的定义域可求出f(x)的定义域可以推出f(x)与y=fg(x)可以互求。若y1=f(x+3),y2=f(2x-5),同理,已知y1=f(x+3)的定义域,故这里
9、f(x)成为了联系y1=f(x+3),y2=f(2x-5)的一个桥梁,其作用与以上解题中u所充当的作用相同。所以,在多对多的题型中,可先利用开始给出的复合函数的定义域先求出f(x),再以f(x)为跳板求出所需求的复合函数的定义域,具体步骤如下:8nCE8。第一步:写出复合函数的复合过程:f(x+3)是由y=f(u)u=x+3复合而成的。 f(2x-5)是由y2=f(u)u=2x-5复合而成的。第二步:求桥梁f(x)的定义域:1x2 4x+35 4u5 设:函数y3=(u),u=x 下转4页 y3=f(x)的定义域为4、5第三步:通过桥梁f(x)进而求出y2=f(2x-5):f(x) 是由y3=
10、f(u),u=x复合而成的 4x5 4u5 42x-55 x25 f(2x-5)的定义域为:5小结:实际上,此题也可以u为桥梁求出f(2x-5), 详参照例2的解法。四、将以上解答过程有机转化为高中的标准解答模式。如:例7:已知函数y=f(x)的定义域为0、1,求函数y=f(x2+1)的定义域。 解:函数f(x2+1)中的x2+1相当于f(x)中的x(即u=x2+1,与u=x) 0x2+11 -1x20 x=0 定义域为0小结:本题解答的实质是以u为桥梁求解。例8:已知y=f(2x-1)的定义域为0、1,求函数y=f(x)的定义域。解:由题意:0x1(即略去第二步,先找出定义域的真正对象)。
11、-12x-11(即求出u,以u为桥梁求出f(x) 视2x-1为一个整体(即u与u的交换)则2x-1相关于f(x)中的x(即u与u的交换,f(x)由y=f(u),u=x复合而成,-1u1, -1x1) 函数f(x)的定义域为-1、1RSjhW。总结:综合分析法分了个步骤 写出复合函数的复合过程。 找出复合函数定义域所指的代数。 找出解题中的桥梁(u或f(x)可为桥梁)浅析复合函数的定义域问题一、复合函数的构成设是到的函数,是到上的函数,且,当取遍中的元素时,取遍,那么就是到上的函数。此函数称为由外函数和内函数复合而成的复合函数。 4y9eX。说明:复合函数的定义域,就是复合函数中的取值范围。称为
12、直接变量,称为中间变量,的取值范围即为的值域。与表示不同的复合函数。例1设函数,求若的定义域为,则复合函数中,注意:的值域例2:若函数的定义域是0,1,求的定义域;若的定义域是-1,1,求函数的定义域;已知定义域是,求定义域要点1:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的 解答:函数是由A到B上的函数与B到C上的函数复合而成的函数函数的定义域是0,1,B=0,1,即函数的值域为0,1,即,函数的定义域0,函数是由A到B上的函数与B到C上的函数复合而成的函数的定义域是-1,1,A=-1,1,即-1,,即的值域是-3,1,的定义域是-3,1要点2:若已知的定义
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合 函数 定义域 详细 讲义 练习 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。