分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型2021年圆知识点总结及归纳.docx

  • 上传人:精***
  • 文档编号:4343693
  • 上传时间:2024-09-08
  • 格式:DOCX
  • 页数:9
  • 大小:93KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 知识点 总结 归纳
    资源描述:
    第一讲 圆方程宋体三号加粗 一、知识清单一级标题宋体四号加粗 (一)圆定义及方程二级标题宋体小四加粗 定义 平面内与定点距离等于定长点集合(轨迹)正文宋体五号 原则 方程 (x-a)2+(y-b)2=r2(r>0) 圆心:(a,b),半径:r 普通 方程 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0) 圆心:, 半径: 1、圆原则方程与普通方程互化三级标题宋体五号加粗 (1)将圆原则方程 (x-a)2+(y-b)2=r2 展开并整顿得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆普通方程x2+y2+Dx+Ey+F=0通过配方后得到方程为: (x+)2+(y+)2= ①当D2+E2-4F>0时,该方程表达以(-,-)为圆心,为半径圆; ②当D2+E2-4F=0时,方程只有实数解x=-,y=-,即只表达一种点(-,-);③当D2+E2-4F<0时,方程没有实数解,因而它不表达任何图形. 2、圆普通方程特性是:x2和y2项系数 都为1 ,没有 xy 二次项. 3、圆普通方程中有三个待定系数D、E、F,因而只规定出这三个系数,圆方程就拟定了. (二)点与圆位置关系 点M(x0,y0)与圆(x-a)2+(y-b)2=r2位置关系: (1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2. (2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2. (3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2. 本处标题级数错误,应为1、2、3三级标题 (三)直线与圆位置关系 办法一: 办法二: (四)圆与圆位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表达圆条件是: (1)B=0; (2)A=C≠0; (3)D2+E2-4AF>0. 2、求圆方程时,要注意应用圆几何性质简化运算. (1)圆心在过切点且与切线垂直直线上. (2)圆心在任一弦中垂线上. (3)两圆内切或外切时,切点与两圆圆心三点共线. 3、中点坐标公式:已知平面直角坐标系中两点A(x1,y1),B(x2,y2),点M(x,y)是线段AB中点,则x= ,y= . 二、典例归纳 考点一:关于圆原则方程求法宋体小四加粗 【例1】注意例题符号使用 圆圆心是 ,半径是 . 【例2】 点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a取值范畴是(  ) A.(-1,1) B.(0,1) C.(-∞,-1)∪(1,+∞) D.(1,+∞) 【例3】 圆心在y轴上,半径为1,且过点(1,2)圆方程为(  ) A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 【例4】 圆(x+2)2+y2=5关于原点P(0,0)对称圆方程为(  ) A.(x-2)2+y2=5     B.x2+(y-2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5 【变式1】已知圆方程为,则圆心坐标为 【变式2】已知圆C与圆关于直线 对称,则圆C方程为 【变式3】 若圆C半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆原则方程是(  ) A.(x-3)2+2=1 B.(x-2)2+(y-1)2=1 C.(x-1)2+(y-3)2=1 D.2+(y-1)2=1 【变式4】已知顶点坐标分别是,,,求外接圆方程. 办法总结:宋体五号加粗 1.运用待定系数法求圆方程核心是建立关于a,b,r方程组. 2.运用圆几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想运用. 考点二、关于圆普通方程求法 【例1】 若方程x2+y2+4mx-2y+5m=0表达圆,则取值范畴是(  ) A .<m<1   B.m<或m>1 C.m< D.m>1 【例2】 将圆x2+y2-2x-4y+1=0平分直线是(  ) A.x+y-1=0 B.x+y+3=0 C.x-y+1=0 D.x-y+3=0 【例3】 圆x2-2x+y2-3=0圆心到直线x+y-3=0距离为________. 【变式1】 已知点是圆上任意一点,P点关于直线对称点也在圆C上,则实数= 【变式2】 已知一种圆通过点、,且圆心在上,求圆方程. 【变式3】 平面直角坐标系中有四点,这四点能否在同一种圆上?为什么? 【变式4】 如果三角形三个顶点分别是O(0,0),A(0,15),B(-8,0),则它内切圆方程为________________. 办法总结: 1.运用待定系数法求圆方程核心是建立关于D,E,F方程组. 2.纯熟掌握圆普通方程向原则方程转化 考点三、与圆关于轨迹问题 【例1】 动点P到点A(8,0)距离是到点B(2,0)距离2倍,则动点P轨迹方程为(  ) A.x2+y2=32       B.x2+y2=16 C.(x-1)2+y2=16 D.x2+(y-1)2=16 【例2】 方程表达曲线是( ) A. 一条射线 B. 一种圆 C. 两条射线 D. 半个圆 【例3】 在中,若点坐标分别是(-2,0)和(2,0),中线AD长度是3,则点A轨迹方程是( ) A. B. C. D. 【例4】 已知一曲线是与两个定点O(0,0),A(3,0)距离比为点轨迹.求这个曲线方程,并画出曲线. 【变式1】 方程所示曲线是( ) A. 一种圆 B. 两个圆 C. 一种半圆 D. 两个半圆 【变式2】 动点P到点A(8,0)距离是到点B(2,0)距离2倍,则动点P轨迹方程为(  ) A.x2+y2=32       B.x2+y2=16 C.(x-1)2+y2=16 D.x2+(y-1)2=16 【变式3】 如右图,过点M(-6,0)作圆C:x2+y2-6x-4y+9=0割线,交圆C于A、B两点,求线段AB中点P轨迹. 【变式4】 如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD交点P轨迹方程. 办法总结:求与圆关于轨迹问题时,依照题设条件不同常采用如下办法: (1)直接法:依照题目条件,建立坐标系,设出动点坐标,找出动点满足条件,然后化简. (2)定义法:依照直线、圆等定义列方程. (3)几何法:运用圆与圆几何性质列方程. (4)代入法:找到规定点与已知点关系,代入已知点满足关系式等. 考点四:与圆关于最值问题 【例1】 已知圆x2+y2+2x-4y+a=0关于直线y=2x+b成轴对称,则a-b取值范畴是________ 【例2】 已知x,y满足x2+y2=1,则最小值为________. 【例3】 已知点M是直线3x+4y-2=0上动点,点N为圆(x+1)2+(y+1)2=1上动点,则|MN|最小值是(  ) A. B.1 C. D. 【例4】已知实数x,y满足(x-2)2+(y+1)2=1则2x-y最大值为________,最小值为________. 【变式1】 P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,则x2+y2最小值为________. 【变式2】 由直线y=x+2上点P向圆C:(x-4)2+(y+2)2=1引切线PT(T为切点),当|PT|最小时,点P坐标是(  ) A.(-1,1) B.(0,2) C.(-2,0) D.(1,3) 【变式3】 已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积最小值是________. 【变式4】已知圆M过两点C(1,-1),D(-1,1),且圆心M在x+y-2=0上. (1)求圆M方程; (2)设P是直线3x+4y+8=0上动点,PA、PB是圆M两条切线,A,B为切点,求四边形PAMB面积最小值. 办法总结:解决与圆关于最值问题惯用办法 (1)形如u=最值问题,可转化为定点(a,b)与圆上动点(x,y)斜率最值问题 (2) 形如t=ax+by最值问题,可转化为动直线截距最值问题; (3)形如(x-a)2+(y-b)2最值问题,可转化为动点到定点距离最值问题. (4)一条直线与圆相离,在圆上找一点到直线最大(小)值: (其中d为圆心到直线距离)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2021年圆知识点总结及归纳.docx
    链接地址:https://www.zixin.com.cn/doc/4343693.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork