图结构习题答案.doc
《图结构习题答案.doc》由会员分享,可在线阅读,更多相关《图结构习题答案.doc(8页珍藏版)》请在咨信网上搜索。
1、第6章 图【例6-1】回答下列问题:(1)具有n个顶点得连通图至少有多少条边?(2)具有n个顶点得强连通图至少有多少条边?这样得图应该就是什么形状?(3)具有n个顶点得有向无环图最多有多少条边?解: (1)具有n个顶点得连通图至少有n-1条边。这就是一个与生成树相关得问题。生成树就是一个连通图,它具有能够连通图中任何两个顶点得最小边集,任何一个生成树都具有n-1边。因此,具有n个顶点得连通图至少有n-1条边。(2)具有n个顶点得强连通图至少有n条边,这样得图就是一个由n个顶点构成得环。强连通图就是相对于有向图而言得。由于强连通图要求图中任何两个顶点之间能够相互连通,因此每个顶点至少要有一条以该
2、顶点为弧头得弧与一条以该顶点为弧尾得弧,每个顶点得入度与出度至少各为1,即顶点得度至少为2,这样根据图得顶点数、边数以及各项点得度三者之间得关系计算可得:边数=2n/2=n。(3)具有n个顶点得有向无环图最多有n(n1)/2条边。这就是一个拓扑排序相关得问题。个有向无环图至少可以排出一个拓扑序列,不妨设这n个顶点排成得拓扑序列为v1,v2,v3,vn,那么在这个序列中,每个顶点vi只可能与排在它后面得顶点之间存在着以vi为弧尾得弧,最多有n-i条,因此在整个图中最多有(n-1)+(n-2)+ +2+1=n(n-1)/2条边。2.图得存储结构常用得存储结构有邻接矩阵与邻接表。(1)邻接矩阵表示法
3、设G(V,E)就是有n(n1)个顶点得图。则G得邻接矩阵就是按如下定义得n阶方阵:0其它1当(i,Vj)E或E时costi,j=0 1 1 01 0 1 11 1 0 10 1 1 0A2=A1=0 1 10 0 10 0 0 例如,图6-1中G1,2得邻接矩阵分别表示为A1、A2,矩阵得行列号对应于图6-1中结点得序号。由邻接矩阵得定义可知,无向图得邻接矩阵必定就是对称阵;有向图得邻接矩阵不一定就是对称得。 根据邻接矩阵,很容易判定任意两个顶点之间就是否有边相连。求各顶点得度也就是非常容易得。对于无向图,顶点Vi得度就就是邻接矩阵中第i行(或第j列)上非零元得个数,即。对于有向图,第i行中非
4、零元得个数为顶点Vi得出度,而第i列上得非零元个数为顶点Vi得入度。(2)邻接表表示法图得邻接链表存储结构就是一种顺序分配与链式分配相结合得存储结构括两个部分:一部分就是向量,另一部分就是链表。邻接链表中得表头部分就是向量,用来存储n个表头结点。向量得下标指示顶点得序号。例如,对于图6-1中G1与G2,其邻接链表如图6-3所示。在无向图得邻接表中顶点vi得度就就是第i个链表中结点得个数。在有向图中,第i个链表得结点数仅就是vi得出度,求vi得入度,必须查遍n个链表才能得出。(a) G1得邻接表123332(b) G2得邻接表图6-3 邻接表31234124433221【例6-2】 图G(V,E
5、),其中V=1,2,3,4,5,6,请画出图G,并写出其邻接矩阵与邻接表表示。解:图G如图6-4中得(a)所示,图G得邻接矩阵与邻接表表示分别如图(b)与(c)所示。对于这类问题,只要掌握了图得概念与存储结构就可以做出正确得答案。通常情况下.对图得顶点排列顺序与各顶点得邻接点排列顺序并没有特定要求,因此,在写出邻接矩阵与邻接表表示时,只要按照某种排列顺序画出相应得结构图就可以了。但应该注意得就是,对于邻接矩阵表示,如果顶点结点得顺序不同,那么邻接矩阵就不相同;对于邻接表表示,如果顶点结点得顺序或者邻接点得顺序不同,那么邻接表就不相同。0 1 1 1 0 00 0 0 0 1 00 1 0 0
6、1 10 0 0 0 0 10 0 0 0 1 10 0 0 0 0 0(b)图6-4 图及其存储结构1(a)34256(c)126453223545666【例6-3】已知一个无向图得邻接表如图6-5所示,要求:(1)画出该无向图;(2)根据邻接表,分别写出用DFS(深度优先搜索)与BFS(广度优先搜索)算法从顶点V0开始遍历该图后所得到得遍历序列。图6-5 图得邻接表存储V6V0V1V5V3V4V22305604361121210250634解:(1)该无向图如图6-6所示。v0v1v2v3v4v6v5图6-6 无向图(2)根据该无向图得邻接表表示,从顶点V0开始得深度优先遍历序列为:V0、
7、V2、V3、V1、V4、V6、V5。广度优先遍历序列为V0、V2、V5、V6、V1、V3、V4。从图得逻辑结构上来讲,从图中某个顶点开始得深度(或广度)优先遍历序列不一定就是唯一得。这就是因为在逻辑结构中,并没有对每个顶点得所有邻接点规定它们之间得先后顺序,这样在搜索算法中选取第个邻接点与下一个邻接点时可能会有不同得结果。但就是在存储结构中,明确地给出了邻接点得先后顺序,这时深度优先与广度优先遍历序列就就是唯一得。【例6-4】对于如图6-8所示得带权无向图,用图示说明:(1)利用Prim算法从顶点a开始构造最小生成树得过程;3e1fdcbag97946218548图6-8 带权无向图(2)利用
8、Kruskal算法构造最小生成树得过程;解:(1)利用Prim算法从顶点a开始构造最小生成树得过程如图6-9所示。aefdcbg初始状态aefdcbg连通e2aefdcbg连通g21aefdcbg连通d2133aefdcbg连通f2143aefdcbg连通b2146图6-9 用Prim算法构造最小生成树得过程3aefdcbg连通c21461(2)利用Kruskal算法构造最小生成树得过程如图6-10所示。aefdcbg初始状态aefdcbg增加第2条边11aefdcbg增加第1条边13aefdcbg增加第5条边21413aefdcbg增加第4条边211aefdcbg增加第3条边211图6-10
9、 用Kruskal算法构造最小生成树得过程3aefdcbg增加第6条边21461【例6-5】 一个带权无向图得最小生成树就是否一定唯一?在什么情况下构造出得最小生成树可能不唯一?解:一个带权无向图得最小生成树不一定就是唯一得。从Kruskal算法构造最小生成树得过程可以瞧出,当从图中选择当前权值最小得边时,如果存在多条这样得边,并且这些边与已经选取得边构成回路,此时这些边就不可能同时出现在一棵最小生成树中,对这些边得不同选择结果可能会产生不同得最小生成树。习题6一、单项选择题 1、 在一个具有n个顶点得有向图中,若所有顶点得出度数之与为s,则所有顶点得入度数之与为(1、 A )。A、 sB、
10、s-1C、 s+1D、 n 2、 在一个具有n个顶点得有向图中,若所有顶点得出度数之与为s,则所有顶点得度数之与为(2、 D)。A、 s B、 s-1C、 s+1D、 2s 3、 在一个具有n个顶点得无向图中,若具有e条边,则所有顶点得度数之与为(3、 D )。A、 n B、 eC、 n+eD、 2e 4、 在一个具有n个顶点得无向完全图中,所含得边数为(4、 C)。A、 nB、 n(n-1)C、 n(n-1)/2D、 n(n+1)/2 5、 在一个具有n个顶点得有向完全图中,所含得边数为( 5、 B )。A、 n B、 n(n-1) C、 n(n-1)/2 D、 n(n+1)/2 6、 在一
11、个无向图中,若两顶点之间得路径长度为k,则该路径上得顶点数为( 6、 B )。A、 k B、 k+1 C、 k+2 D、 2k 7、 对于一个具有n个顶点得无向连通图,它包含得连通分量得个数为(7、 B)。A、 0 B、 1 C、 n D、 n+1 8、 若一个图中包含有k个连通分量,若要按照深度优先搜索得方法访问所有顶点,则必须调用(8、 A )次深度优先搜索遍历得算法。A、 k B、 1 C、 k-1 D、 k+1 9、 若要把n个顶点连接为一个连通图,则至少需要(9、 C )条边。A、 n B、 n+1 C、 n-1 D、 2n 10、 在一个具有n个顶点与e条边得无向图得邻接矩阵中,表
12、示边存在得元素(又称为有效元素)得个数为( 10、 D )。A、 n B、 ne C、 e D、 2e 11、 在一个具有n个顶点与e条边得有向图得邻接矩阵中,表示边存在得元素个数为( 11、 C )。A、 n B、 ne C、 e D、 2e 12、 在一个具有n个顶点与e条边得无向图得邻接表中,边结点得个数为(12、 D )。A、 n B、 ne C、 e D、 2e 13、 在一个具有n个顶点与e条边得有向图得邻接表中,保存顶点单链表得表头指针向量得大小至少为(13、 A )。A、 n B、 2n C、 e D、 2e 14、 在一个无权图得邻接表表示中,每个边结点至少包含(14、 B
13、)域。A、 1 B、 2 C、 3 D、 4 15、 对于一个有向图,若一个顶点得度为k1,出度为k2,则对应邻接表中该顶点单链表中得边结点数为(15、 B )。A、 k1 B、 k2 C、 k1-k2 D、 k1+k2 16、 对于一个有向图,若一个顶点得度为k1,出度为k2,则对应逆邻接表中该顶点单链表中得边结点数为(16、 C )。A、 k1 B、 k2 C、 k1-k2 D、 k1+k2 17、 对于一个无向图,下面(17、 A )种说法就是正确得。A、 每个顶点得入度等于出度 B、 每个顶点得度等于其入度与出度之与C、 每个顶点得入度为0 D、 每个顶点得出度为0 18、 在一个有向
14、图得邻接表中,每个顶点单链表中结点得个数等于该顶点得(18、 A)。A、 出边数 B、 入边数 C、 度数 D、 度数减1 19、 若一个图得边集为(A,B),(A,C),(B,D),(C,F),(D,E),(D,F),则从顶点A开始对该图进行深度优先搜索,得到得顶点序列可能为( 19、 B )。A、 A,B,C,F,D,E B、 A,C,F,D,E,BC、 A,B,D,C,F,E D、 A,B,D,F,E,C 20、 若一个图得边集为(A,B),(A,C),(B,D),(C,F),(D,E),(D,F),则从顶点A开始对该图进行广度优先搜索,得到得顶点序列可能为(20、 D )。A、 A,B
15、,C,D,E,F B、 A,B,C,F,D,EC、 A,B,D,C,E,F D、 A,C,B,F,D,E 21、 若一个图得边集为,则从顶点1开始对该图进行深度优先搜索,得到得顶点序列可能为(21、 A )。A、 1,2,5,4,3 B、 1,2,3,4,5C、 1,2,5,3,4 D、 1,4,3,2,5 22、 若一个图得边集为,则从顶点1开始对该图进行广度优先搜索,得到得顶点序列可能为( 22、 C )。A、 1,2,3,4,5 B、 1,2,4,3,5C、 1,2,4,5,3 D、 1,4,2,5,3 23、 由一个具有n个顶点得连通图生成得最小生成树中,具有(23、 B )条边。A、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 习题 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。