中考数学-2016年湖北省武汉市中考数学试卷.doc
《中考数学-2016年湖北省武汉市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《中考数学-2016年湖北省武汉市中考数学试卷.doc(39页珍藏版)》请在咨信网上搜索。
2016年湖北省武汉市中考数学试卷 一、选择题(共10小题,每小题3分,共30分) 1.(3分)(2016•武汉)实数的值在( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间 2.(3分)(2016•武汉)若代数式在实数范围内有意义,则实数x的取值范围是( ) A.x<3 B.x>3 C.x≠3 D.x=3 3.(3分)(2016•武汉)下列计算中正确的是( ) A.a•a2=a2 B.2a•a=2a2 C.(2a2)2=2a4 D.6a8÷3a2=2a4 4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A.摸出的是3个白球 B.摸出的是3个黑球 C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球 5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是( ) A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9 6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( ) A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1 7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( ) A. B. C. D. 8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示: 日加工零件数 4 5 6 7 8 人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( ) A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6 9.(3分)(2016•武汉)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( ) A.π B.π C.2 D.2 10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( ) A.5 B.6 C.7 D.8 二、填空题(本大题共6个小题,每小题3分,共18分) 11.(3分)(2016•武汉)计算5+(﹣3)的结果为 . 12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 . 13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 . 14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为 . 15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 . 16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为 . 三、解答题(共8题,共72分) 17.(8分)(2016•武汉)解方程:5x+2=3(x+2) 18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图. 请你根据以上的信息,回答下列问题: (1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 . (2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数. 20.(8分)(2016•武汉)已知反比例函数y=. (1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值; (2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积. 21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E. (1)求证:AC平分∠DAB; (2)连接BE交AC于点F,若cos∠CAD=,求的值. 22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表: 产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙 20 10 40+0.05x2 80 其中a为常数,且3≤a≤5 (1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式; (2)分别求出产销两种产品的最大年利润; (3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 23.(10分)(2016•武汉)在△ABC中,P为边AB上一点. (1)如图1,若∠ACP=∠B,求证:AC2=AP•AB; (2)若M为CP的中点,AC=2. ①如图2,若∠PBM=∠ACP,AB=3,求BP的长; ②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长. 24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方. (1)如图1,若P(1,﹣3),B(4,0). ①求该抛物线的解析式; ②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标; (2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由. 2016年湖北省武汉市中考数学试卷 参考答案与试题解析 一、选择题(共10小题,每小题3分,共30分) 1.(3分)(2016•武汉)实数的值在( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间 【考点】2B:估算无理数的大小.菁优网版权所有 【分析】直接利用估算无理数大小,正确得出接近的有理数,进而得出答案. 【解答】解:∵1<<2, ∴实数的值在:1和2之间. 故选:B. 【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键. 2.(3分)(2016•武汉)若代数式在实数范围内有意义,则实数x的取值范围是( ) A.x<3 B.x>3 C.x≠3 D.x=3 【考点】62:分式有意义的条件.菁优网版权所有 【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围. 【解答】解:依题意得:x﹣3≠0, 解得x≠3, 故选:C. 【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零. 3.(3分)(2016•武汉)下列计算中正确的是( ) A.a•a2=a2 B.2a•a=2a2 C.(2a2)2=2a4 D.6a8÷3a2=2a4 【考点】4I:整式的混合运算.菁优网版权所有 【专题】11 :计算题;512:整式. 【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断; B、原式利用单项式乘单项式法则计算得到结果,即可作出判断; C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断; D、原式利用单项式除以单项式法则计算得到结果,即可作出判断. 【解答】解:A、原式=a3,错误; B、原式=2a2,正确; C、原式=4a4,错误; D、原式=2a6,错误, 故选B 【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A.摸出的是3个白球 B.摸出的是3个黑球 C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球 【考点】X1:随机事件.菁优网版权所有 【分析】根据白色的只有两个,不可能摸出三个进行解答. 【解答】解:A.摸出的是3个白球是不可能事件; B.摸出的是3个黑球是随机事件; C.摸出的是2个白球、1个黑球是随机事件; D.摸出的是2个黑球、1个白球是随机事件, 故选:A. 【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是( ) A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9 【考点】4C:完全平方公式.菁优网版权所有 【分析】根据完全平方公式,即可解答. 【解答】解:(x+3)2=x2+6x+9, 故选:C. 【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式. 6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( ) A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1 【考点】R6:关于原点对称的点的坐标.菁优网版权所有 【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答. 【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称, ∴a=﹣5,b=﹣1. 故选D. 【点评】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数. 7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( ) A. B. C. D. 【考点】U2:简单组合体的三视图.菁优网版权所有 【分析】找到从左面看所得到的图形即可. 【解答】解:从左面可看到一个长方形和上面一个长方形. 故选:A. 【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示: 日加工零件数 4 5 6 7 8 人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( ) A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6 【考点】W5:众数;W2:加权平均数;W4:中位数.菁优网版权所有 【分析】根据众数、平均数和中位数的定义分别进行解答即可. 【解答】解:5出现了6次,出现的次数最多,则众数是5; 把这些数从小到大排列,中位数第10、11个数的平均数, 则中位数是=6; 平均数是:=6; 故选D. 【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数. 9.(3分)(2016•武汉)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( ) A.π B.π C.2 D.2 【考点】O4:轨迹;KW:等腰直角三角形.菁优网版权所有 【专题】11 :计算题. 【分析】取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=BC=4,则OC=AB=2,OP=AB=2,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=2,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长. 【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图, ∵在等腰Rt△ABC中,AC=BC=2, ∴AB=BC=4, ∴OC=AB=2,OP=AB=2, ∵M为PC的中点, ∴OM⊥PC, ∴∠CMO=90°, ∴点M在以OC为直径的圆上, 点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2, ∴M点的路径为以EF为直径的半圆, ∴点M运动的路径长=•2π•1=π. 故选B. 【点评】本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M点的轨迹为以EF为直径的半圆. 10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( ) A.5 B.6 C.7 D.8 【考点】KI:等腰三角形的判定;D5:坐标与图形性质.菁优网版权所有 【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数. 【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0). ∴AB=2, ①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4), ∵点(0,4)与直线AB共线, ∴满足△ABC是等腰三角形的C点有1个; ②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个; ③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个; 综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个. 故选A 【点评】本题考查了等腰三角形的判定,也考查了通过坐标确定图形的性质以及分类讨论思想的运用. 二、填空题(本大题共6个小题,每小题3分,共18分) 11.(3分)(2016•武汉)计算5+(﹣3)的结果为 2 . 【考点】19:有理数的加法.菁优网版权所有 【专题】11 :计算题;511:实数. 【分析】原式利用异号两数相加的法则计算即可得到结果. 【解答】解:原式=+(5﹣3)=2, 故答案为:2. 【点评】此题考查了有理数的加法,熟练掌握加法法则是解本题的关键. 12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 6.3×104 . 【考点】1I:科学记数法—表示较大的数.菁优网版权所有 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将63 000用科学记数法表示为6.3×104. 故答案为:6.3×104. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 . 【考点】X4:概率公式.菁优网版权所有 【分析】先求出5的总数,再根据概率公式即可得出结论. 【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个, ∴随机投掷一次小正方体,则朝上一面的数字是5的概率==. 故答案为:. 【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键. 14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为 36° . 【考点】L5:平行四边形的性质.菁优网版权所有 【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小. 【解答】解:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°, ∴∠FED′=108°﹣72°=36°; 故答案为:36°. 【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键. 15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 ﹣4≤b≤﹣2 . 【考点】F9:一次函数图象与几何变换.菁优网版权所有 【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围. 【解答】解:∵y=2x+b, ∴当y<2时,2x+b<2,解得x<; ∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b, ∴当y<2时,﹣2x﹣b<2,解得x>﹣; ∴﹣<x<, ∵x满足0<x<3, ∴﹣=0,=3, ∴b=﹣2,b=﹣4, ∴b的取值范围为﹣4≤b≤﹣2. 故答案为:﹣4≤b≤﹣2. 【点评】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键. 16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为 2 . 【考点】S9:相似三角形的判定与性质;KQ:勾股定理;KS:勾股定理的逆定理.菁优网版权所有 【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可. 【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示: 则∠M=90°, ∴∠DCM+∠CDM=90°, ∵∠ABC=90°,AB=3,BC=4, ∴AC2=AB2+BC2=25, ∵CD=10,AD=5, ∴AC2+CD2=AD2, ∴△ACD是直角三角形,∠ACD=90°, ∴∠ACB+∠DCM=90°, ∴∠ACB=∠CDM, ∵∠ABC=∠M=90°, ∴△ABC∽△CMD, ∴=, ∴CM=2AB=6,DM=2BC=8, ∴BM=BC+CM=10, ∴BD===2, 故答案为:2. 【点评】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键. 三、解答题(共8题,共72分) 17.(8分)(2016•武汉)解方程:5x+2=3(x+2) 【考点】86:解一元一次方程.菁优网版权所有 【专题】11 :计算题;521:一次方程(组)及应用. 【分析】方程去括号,移项合并,把x系数化为1,即可求出解. 【解答】解:去括号得:5x+2=3x+6, 移项合并得:2x=4, 解得:x=2. 【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 【考点】KD:全等三角形的判定与性质.菁优网版权所有 【专题】14 :证明题. 【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等. 【解答】证明:∵BE=CF, ∴BC=EF, 在△ABC与△DEF中, , ∴△ABC≌△DEF(SSS), ∴∠ABC=∠DEF, ∴AB∥DE. 【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等. 19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图. 请你根据以上的信息,回答下列问题: (1)本次共调查了 50 名学生,其中最喜爱戏曲的有 3 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 72° . (2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数. 【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.菁优网版权所有 【分析】(1)由“新闻”类人数及百分比可得总人数,由总人数及“戏曲”类百分比可得其人数,求出“体育”类所占百分比,再乘以360°即可; (2)用样本中“新闻”类人数所占百分比乘以总人数2000即可. 【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人); ∵“娱乐”类人数占被调查人数的百分比为:×100%=36%, ∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°; 故答案为:50,3,72°. (2)2000×8%=160(人), 答:估计该校2000名学生中最喜爱新闻的人数约有160人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 20.(8分)(2016•武汉)已知反比例函数y=. (1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值; (2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积. 【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有 【分析】(1)解方程组得到kx2+4x﹣4=0,由反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,得到△=16+16k=0,求得k=﹣1; (2)根据平移的性质即可得到结论. 【解答】解:(1)解得kx2+4x﹣4=0, ∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点, ∴△=16+16k=0, ∴k=﹣1; (2)如图所示,C1平移至C2处所扫过的面积=2×3=6. 【点评】本题考查了反比例函数与一次函数的交点问题,平移的性质,一元二次方程根与系数的关系,知道反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点时,△=0是解题的关键. 21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E. (1)求证:AC平分∠DAB; (2)连接BE交AC于点F,若cos∠CAD=,求的值. 【考点】MC:切线的性质.菁优网版权所有 【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案; (2)连接BE、BC、OC,BE交AC于F交OC于H,根据cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,根据cos∠CAB==,求出AB、BC,再根据勾股定理求出CH,由此即可解决问题; 【解答】(1)证明:连接OC, ∵CD是⊙O的切线, ∴CD⊥OC, 又∵CD⊥AD, ∴AD∥OC, ∴∠CAD=∠ACO, ∵OA=OC, ∴∠CAO=∠ACO, ∴∠CAD=∠CAO, 即AC平分∠DAB; (2)解:连接BE、BC、OC,BE交AC于F交OC于H. ∵AB是直径, ∴∠AEB=∠DEH=∠D=∠DCH=90°, ∴四边形DEHC是矩形, ∴∠EHC=90°即OC⊥EB, ∴DC=EH=HB,DE=HC, ∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a, ∵cos∠CAB==, ∴AB=a,BC=a, 在RT△CHB中,CH==a, ∴DE=CH=a,AE==a, ∵EF∥CD, ∴==. 【点评】本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键. 22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表: 产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙 20 10 40+0.05x2 80 其中a为常数,且3≤a≤5 (1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式; (2)分别求出产销两种产品的最大年利润; (3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 【考点】HE:二次函数的应用.菁优网版权所有 【分析】(1)根据利润=销售数量×每件的利润即可解决问题. (2)根据一次函数的增减性,二次函数的增减性即可解决问题. (3)根据题意分三种情形分别求解即可:)①(1180﹣200a)=440,②(1180﹣200a)>440,③(1180﹣200a)<440. 【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200) y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80). (2)对于y1=(6﹣a)x﹣20,∵6﹣a>0, ∴x=200时,y1的值最大=(1180﹣200a)万元. 对于y2=﹣0.05(x﹣100)2+460, ∵0<x≤80, ∴x=80时,y2最大值=440万元. (3)①(1180﹣200a)=440,解得a=3.7, ②(1180﹣200a)>440,解得a<3.7, ③(1180﹣200a)<440,解得a>3.7, ∵3≤a≤5, ∴当a=3.7时,生产甲乙两种产品的利润相同. 当3≤a<3.7时,生产甲产品利润比较高. 当3.7<a≤5时,生产乙产品利润比较高. 【点评】本题考查二次函数、一次函数的应用,解题的关键是构建函数解决实际问题中的方案问题,属于中考常考题型. 23.(10分)(2016•武汉)在△ABC中,P为边AB上一点. (1)如图1,若∠ACP=∠B,求证:AC2=AP•AB; (2)若M为CP的中点,AC=2. ①如图2,若∠PBM=∠ACP,AB=3,求BP的长; ②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长. 【考点】SO:相似形综合题.菁优网版权所有 【分析】(1)根据相似三角形的判定定理即可得到结论; (2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,根据三角形的中位线的性质得到MG∥AC,由平行线的性质得到∠BGM=∠A,∵∠根据相似三角形的性质得到,求得x=,即可得到结论;②过C作CH⊥AB于H,延长AB到E,使BE=BP解直角三角形得到CH=,HE=+x,根据勾股定理得到CE2=(+9+x)2根据相似三角形的性质得到CE2=EP•EA列方程即可得到结论. 【解答】解:(1)∵∠ACP=∠B,∠A=∠A, ∴△ACP∽△ABC, ∴, ∴AC2=AP•AB; (2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x, ∵M是PC的中点, ∴MG∥AC, ∴∠BGM=∠A, ∵∠ACP=∠PBM, ∴△APC∽△GMB, ∴, 即, ∴x=, ∵AB=3, ∴AP=3﹣, ∴PB=; ②过C作CH⊥AB于H,延长AB到E,使BE=BP, 设BP=x. ∵∠ABC=45°,∠A=60°, ∴CH=,HE=+x, ∵CE2=(+(+x)2, ∵PB=BE,PM=CM, ∴BM∥CE, ∴∠PMB=∠PCE=60°=∠A, ∵∠E=∠E, ∴△ECP∽△EAC, ∴, ∴CE2=EP•EA, ∴3+3+x2+2x=2x(x++1), ∴x=﹣1, ∴PB=﹣1. 【点评】本题考查了相似三角形的判定和性质,平行线的性质,三角形的中位线的性质,勾股定理,正确作出辅助线是解题的关键. 24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方. (1)如图1,若P(1,﹣3),B(4,0). ①求该抛物线的解析式; ②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标; (2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由. 【考点】HF:二次函数综合题.菁优网版权所有 【分析】(1)①根据待定系数法求函数解析式,可得答案;②根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标; (2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案. 【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得 ,解得, 抛物线的解析式为y=x2﹣; ②如图1, 当点D在OP左侧时, 由∠DPO=∠POB,得 DP∥OB, D与P关于y轴对称,P(1,﹣3), 得D(﹣1,﹣3); 当点D在OP右侧时,延长PD交x轴于点G. 作PH⊥OB于点H,则OH=1,PH=3. ∵∠DPO=∠POB, ∴PG=OG. 设OG=x,则PG=x,HG=x﹣1. 在Rt△PGH中,由x2=(x﹣1)2+32,得x=5. ∴点G(5,0). ∴直线PG的解析式为y=x﹣ 解方程组得,. ∵P(1,﹣3), ∴D(,﹣). ∴点D的坐标为(﹣1,﹣3)或(,﹣). (2)点P运动时,是定值,定值为2,理由如下: 作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2. ∵PQ∥OF, ∴, ∴OF==﹣==amt+at2. 同理OE=﹣amt+at2. ∴OE+OF=2at2=﹣2c=2OC. ∴=2. 【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键. 考点卡片 1.有理数的加法 (1)有理数加法法则: ①同号相加,取相同符号,并把绝对值相加. ②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. ③一个数同0相加,仍得这个数. (在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.) (2)相关运算律 交换律:a+b=b+a; 结合律(a+b)+c=a+(b+c). 2.科学记数法—表示较大的数 (1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】 (2)规律方法总结: ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n. ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号. 3.估算无理数的大小 估算无理数大小要用逼近法. 思维方法:用有理数逼近无理数,求无理数的近似值. 4.完全平方公式 (1)完全平方公式:(a±b)2=a2±2ab+b2. 可巧记为:“首平方,末平方,首末两倍中间放”. (2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同. (3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式. 5.整式的混合运算 (1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似. (2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来. 6.分式有意义的条件 (1)分式有意义的条件是分母不等于零. (2)分式无意义的条件是分母等于零. (3)分式的值为正数的条件是分子、分母同号. (4)分式的值为负数的条件是分子、分母异号. 7.解一元一次方程 (1)解一元一次方程的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化. (2- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 2016 湖北省 武汉市 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文