分享
分销 收藏 举报 申诉 / 19
播放页_导航下方通栏广告

类型诱导公式总结大全.doc

  • 上传人:人****来
  • 文档编号:4333412
  • 上传时间:2024-09-06
  • 格式:DOC
  • 页数:19
  • 大小:275.51KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    诱导 公式 总结 大全
    资源描述:
    诱导公式1 合适尺寸 实际尺寸 诱导公式的本质   所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 常用的诱导公式   公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)=sinα   cos(2kπ+α)=cosα   tan(2kπ+α)=tanα   cot(2kπ+α)=cotα   公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   公式三: 任意角α与 -α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六: π/2±α与α的三角函数值之间的关系:   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα诱导公式记忆口诀 奇变偶不变,符号看象限。 “奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余 弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 一全正;二正弦;三两切;四余弦 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。 其他三角函数知识 同角三角函数的基本关系式   倒数关系    tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1   商的关系   sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方关系   sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法   构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。   倒数关系   对角线上两个函数互为倒数;   商数关系   六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。   平方关系   在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ-cosαsinβ   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 二倍角的正弦、余弦和正切公式   sin2α=2sinαcosα   cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)   tan2α=2tanα/(1-tan^2(α)) 半角的正弦、余弦和正切公式   sin^2(α/2)=(1-cosα)/2   cos^2(α/2)=(1+cosα)/2   tan^2(α/2)=(1-cosα)/(1+cosα)   tan(α/2)=(1—cosα)/sinα=sinα/1+cosα 万能公式   sinα=2tan(α/2)/(1+tan^2(α/2))   cosα=(1-tan^2(α/2))/(1+tan^2(α/2))   tanα=(2tan(α/2))/(1-tan^2(α/2)) 三倍角的正弦、余弦和正切公式   sin3α=3sinα-4sin^3(α)    cos3α=4cos^3(α)-3cosα    tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) 三角函数的和差化积公式   sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)   sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)   cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)   cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2) 三角函数的积化和差公式   sinα·cosβ=0.5[sin(α+β)+sin(α-β)]   cosα·sinβ=0.5[sin(α+β)-sin(α-β)]   cosα·cosβ=0.5[cos(α+β)+cos(α-β)]   sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)] 公式推导过程   万能公式推导   sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,   (因为cos^2(α)+sin^2(α)=1)   再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))   然后用α/2代替α即可。   同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。   三倍角公式推导   tan3α=sin3α/cos3α   =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)   =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)   上下同除以cos^3(α),得:   tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))   sin3α=sin(2α+α)=sin2αcosα+cos2αsinα   =2sinαcos^2(α)+(1-2sin^2(α))sinα   =2sinα-2sin^3(α)+sinα-2sin^3(α)   =3sinα-4sin^3(α)   cos3α=cos(2α+α)=cos2αcosα-sin2αsinα   =(2cos^2(α)-1)cosα-2cosαsin^2(α)   =2cos^3(α)-cosα+(2cosα-2cos^3(α))   =4cos^3(α)-3cosα   即   sin3α=3sinα-4sin^3(α)   cos3α=4cos^3(α)-3cosα   和差化积公式推导   首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb   我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb   所以,sina*cosb=(sin(a+b)+sin(a-b))/2   同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2   同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb   所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb   所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2   同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2   这样,我们就得到了积化和差的四个公式:   sina*cosb=(sin(a+b)+sin(a-b))/2   cosa*sinb=(sin(a+b)-sin(a-b))/2   cosa*cosb=(cos(a+b)+cos(a-b))/2   sina*sinb=-(cos(a+b)-cos(a-b))/2   好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.   我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2   把a,b分别用x,y表示就可以得到和差化积的四个公式:   sinx+siny=2sin((x+y)/2)*cos((x-y)/2)   sinx-siny=2cos((x+y)/2)*sin((x-y)/2)   cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 诱导公式2 诱导公式是数学三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数。 目录 诱导公式 诱导公式记忆口诀 同角三角函数基本关系 同角三角函数关系六角形记忆法 两角和差公式 二倍角公式 半角公式 万能公式 万能公式推导 三倍角公式 三倍角公式推导 三倍角公式联想记忆 和差化积公式 积化和差公式 和差化积公式推导 诱导公式 诱导公式记忆口诀 同角三角函数基本关系 同角三角函数关系六角形记忆法 两角和差公式 二倍角公式 半角公式 万能公式 · 万能公式推导 · 三倍角公式 · 三倍角公式推导 · 三倍角公式联想记忆 · 和差化积公式 · 积化和差公式 · 和差化积公式推导 展开          诱导公式   【诱导公式】   常用的诱导公式有以下几组:(公式一~公式五函数名未改变, 公式六函数名发生改变)    公式一:    设α为任意角,终边相同的角的同一三角函数的值相等:   弧度制下的角的表示:   sin(2kπ+α)=sinα (k∈Z)   cos(2kπ+α)=cosα (k∈Z)   tan(2kπ+α)=tanα (k∈Z)   cot(2kπ+α)=cotα (k∈Z)   sec(2kπ+α)=secα (k∈Z)   csc(2kπ+α)=cscα (k∈Z)   角度制下的角的表示:   sin (α+k·360°)=sinα(k∈Z)   cos(α+k·360°)=cosα(k∈Z)   tan (α+k·360°)=tanα(k∈Z)   cot(α+k·360°)=cotα (k∈Z)   sec(α+k·360°)=secα (k∈Z)   csc(α+k·360°)=cscα (k∈Z)   公式二:    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   弧度制下的角的表示:   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   sec(π+α)=-secα   csc(π+α)=-cscα   角度制下的角的表示:   sin(180°+α)=-sinα   cos(180°+α)=-cosα   tan(180°+α)=tanα   cot(180°+α)=cotα   sec(180°+α)=-secα   csc(180°+α)=-cscα   公式三:    任意角α与 -α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   sec(-α)=secα   csc-α)=-cscα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   弧度制下的角的表示:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   sec(π-α)=-secα   csc(π-α)=cscα   角度制下的角的表示:   sin(180°-α)=sinα   cos(180°-α)=-cosα   tan(180°-α)=-tanα   cot(180°-α)=-cotα   sec(180°-α)=-secα   csc(180°-α)=cscα   公式五:   利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   弧度制下的角的表示:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   sec(2π-α)=secα   csc(2π-α)=-cscα   角度制下的角的表示:   sin(360°-α)=-sinα   cos(360°-α)=cosα   tan(360°-α)=-tanα   cot(360°-α)=-cotα   sec(360°-α)=secα   csc(360°-α)=-cscα   小结:以上五组公式可简记为:函数名不变,符号看象限.   即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。   公式六:   π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)   ⒈ π/2+α与α的三角函数值之间的关系   弧度制下的角的表示:   sin(π/2+α)=cosα   cos(π/2+α)=—sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sec(π/2+α)=-cscα   csc(π/2+α)=secα   角度制下的角的表示:   sin(90°+α)=cosα   cos(90°+α)=-sinα   tan(90°+α)=-cotα   cot(90°+α)=-tanα   sec(90°+α)=-cscα   csc(90°+α)=secα   ⒉ π/2-α与α的三角函数值之间的关系   弧度制下的角的表示:   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sec(π/2-α)=cscα   csc(π/2-α)=secα   角度制下的角的表示:   sin (90°-α)=cosα   cos (90°-α)=sinα   tan (90°-α)=cotα   cot (90°-α)=tanα   sec (90°-α)=cscα   csc (90°-α)=secα   ⒊ 3π/2+α与α的三角函数值之间的关系   弧度制下的角的表示:   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sec(3π/2+α)=cscα   csc(3π/2+α)=-secα   角度制下的角的表示:   sin(270°+α)=-cosα   cos(270°+α)=sinα   tan(270°+α)=-cotα   cot(270°+α)=-tanα   sec(270°+α)=cscα   csc(270°+α)=-secα   ⒋ 3π/2-α与α的三角函数值之间的关系   弧度制下的角的表示:   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   sec(3π/2-α)=-secα   csc(3π/2-α)=-secα   角度制下的角的表示:   sin(270°-α)=-cosα   cos(270°-α)=-sinα   tan(270°-α)=cotα   cot(270°-α)=tanα   sec(270°-α)=-cscα   csc(270°-α)=-secα   温馨提示:1.在做题目的时候,最好将α看成是锐角。 2.k∈Z   总结记忆:奇变偶不变,符号看象限。奇偶是针对k而言的,变与不变是针对三角函数名而言。 诱导公式记忆口诀   ※规律总结※   上面这些诱导公式可以概括为:   对于kπ/2±α(k∈Z)的三角函数值,   ①当k是偶数时,得到α的同名函数值,即函数名不改变;   ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.   (奇变偶不变)   然后在前面加上把α看成锐角时原函数值的符号。   (符号看象限)   例如:   sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。   当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。   所以sin(2π-α)=-sinα   上述的记忆口诀是:   奇变偶不变,符号看象限。   公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α   所在象限的原三角函数值的符号可记忆   水平诱导名不变;符号看象限。   #   各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.   这十二字口诀的意思就是说:   第一象限内任何一个角的四种三角函数值都是“+”;   第二象限内只有正弦是“+”,其余全部是“-”;   第三象限内切函数是“+”,弦函数是“-”;   第四象限内只有余弦是“+”,其余全部是“-”.   上述记忆口诀,一全正,二正弦,三内切,四余弦   #   还有一种按照函数类型分象限定正负:   函数类型 第一象限 第二象限 第三象限 第四象限   正弦 ...........+............+............—............—........   余弦 ...........+............—............—............+........   正切 ...........+............—............+............—........   余切 ...........+............—............+............—........   奇变偶不变,符号看象限 同角三角函数基本关系   同角三角函数的基本关系式   倒数关系:   tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1   商的关系:   sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方关系:   sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法   六角形记忆法:(参看图片或参考资料链接)   构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。   (1)倒数关系:对角线上两个函数互为倒数;   (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。   (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。   (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式   两角和与差的三角函数公式   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ-cosαsinβ   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式   二倍角的正弦、余弦和正切公式(升幂缩角公式)   sin2α=2sinαcosα   cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)   tan2α=2tanα/[1-tan^2(α)] 半角公式   半角的正弦、余弦和正切公式(降幂扩角公式)   sin^2(α/2)=(1-cosα)/2   cos^2(α/2)=(1+cosα)/2   tan^2(α/2)=(1-cosα)/(1+cosα)   另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) 万能公式   万能公式   sinα=2tan(α/2)/[1+tan^2(α/2)]   cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]   tanα=2tan(α/2)/[1-tan^2(α/2)] 万能公式推导   附推导:   sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,   (因为cos^2(α)+sin^2(α)=1)   再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))   然后用α/2代替α即可。   同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式   三倍角的正弦、余弦和正切公式   sin3α=3sinα-4sin^3(α)   cos3α=4cos^3(α)-3cosα   tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]=tanαtan(π/3+α)tan(π/3-α) 三倍角公式推导   附推导:   tan3α=sin3α/cos3α   =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)   =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)   上下同除以cos^3(α),得:   tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))   sin3α=sin(2α+α)=sin2αcosα+cos2αsinα   =2sinαcos^2(α)+(1-2sin^2(α))sinα   =2sinα-2sin^3(α)+sinα-2sin^3(α)   =3sinα-4sin^3(α)   cos3α=cos(2α+α)=cos2αcosα-sin2αsinα   =(2cos^2(α)-1)cosα-2cosαsin^2(α)   =2cos^3(α)-cosα+(2cosα-2cos^3(α))   =4cos^3(α)-3cosα   即   sin3α=3sinα-4sin^3(α)   cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆   ★记忆方法:谐音、联想   正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))   余弦三倍角:4元3角 减 3元(减完之后还有“余”)   ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。   ★另外的记忆方法:   正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方   余弦三倍角: 司令无山 与上同理 和差化积公式   三角函数的和差化积公式   sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 积化和差公式   三角函数的积化和差公式   sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]   cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]   cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]   sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)] 和差化积公式推导   附推导:   首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb   我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb   所以,sina*cosb=(sin(a+b)+sin(a-b))/2   同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2   同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb   所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb   所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2   同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2   这样,我们就得到了积化和差的四个公式:   sina*cosb=(sin(a+b)+sin(a-b))/2   cosa*sinb=(sin(a+b)-sin(a-b))/2   cosa*cosb=(cos(a+b)+cos(a-b))/2   sina*sinb=-(cos(a+b)-cos(a-b))/2   好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.   我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2   把a,b分别用x,y表示就可以得到和差化积的四个公式:   sinx+siny=2sin((x+y)/2)*cos((x-y)/2)   sinx-siny=2cos((x+y)/2)*sin((x-y)/2)   cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)   cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 反三角函数其他公式   arcsin(-x)=-arcsinx   arccos(-x)=π-arccosx   arctan(-x)=-arctanx   arccot(-x)=π-arccotx   arcsinx+arccosx=π/2=arctanx+arccotx   sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x   当 x∈[-π/2, π/2] 有arcsin(sinx)=x   x∈[0,π], arccos(cosx)=x   x∈(-π/2, π/2), arctan(tanx)=x   x∈(0, π), arccot(cotx)=x   x>0, arctanx=π/2-arctan1/x, arccotx类似   若 (arctanx+arctany)∈(-π/2, π/2), 则 arctanx+arctany=arctan(x+y/1-xy) 三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x|x∈R且x≠kπ+,k∈Z} {x|x∈R且x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 时ymax=1 x=2kπ- 时ymin=-1 [-1,1] x=2kπ时ymax=1 x=2kπ+π时ymin=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ-,2kπ+ ]上都是增函数;在[2kπ+ ,2kπ+π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z) 在(kπ-,kπ+)内都是增函数(k∈Z) 在(kπ,kπ+π)内都是减函数(k∈Z) .反三角函数: arcsinx arccosx arctanx arccotx 名称 反正弦函数 反余弦函数 反正切函数 反余切函数 定义 y=sinx(x∈〔-, 〕的反函数,叫做反正弦函数,记作x=arsiny y=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy y=tanx(x∈(- , )的反函数,叫做反正切函数,记作x=arctany y=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty 理解 arcsinx表示属于[-,] 且正弦值等于x的角 arccosx表示属于[0,π],且余弦值等于x的角 arctanx表示属于(-,),且正切值等于x的角 arccotx表示属于(0,π)且余切值等于x的角 性质 定义域 [-1,1] [-1,1] (-∞,+∞) (-∞,+∞) 值域 [-,] [0,π] (-,) (0,π) 单调性 在〔-1,1〕上是增函数 在[-1,1]上是减函数 在(-∞,+∞)上是增数 在(-∞,+∞)上是减函数 奇偶性 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx 周期性 都不是同期函数 恒等式 sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-,]) cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π]) tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-,)) cot(arccotx)=x(x∈R) arccot(cotx)=x(x∈(0,π)) 互余恒等式 arcsinx+arccosx=(x∈[-1,1]) arctanx+arccotx=(X∈R)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:诱导公式总结大全.doc
    链接地址:https://www.zixin.com.cn/doc/4333412.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork