解直角三角形应用专题带答案-.doc
《解直角三角形应用专题带答案-.doc》由会员分享,可在线阅读,更多相关《解直角三角形应用专题带答案-.doc(30页珍藏版)》请在咨信网上搜索。
解直角三角形应用专题练习 一.解答题(共21小题) 1.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.) 2.如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数). 3.2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号) 4.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732) 5.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732) 6.随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里). 7.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长. (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 8.如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km. (1)求景点B与C的距离; (2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号) 9.为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732) 10.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60. 11.小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73) 12.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号). 13.如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上. (1)求坡底C点到大楼距离AC的值; (2)求斜坡CD的长度. 14.某次台风袭击了我国西南部海域.如图,台风来临前,我国海上搜救中心A接到一渔船遇险的报警,于是令位于A的正南方向180海里的救援队B立即施救.已知渔船所处位置C在A的南偏东34°方向,在B的南偏东63°方向,此时离台风来到C处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C处对其施救? 15.如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处. (1)求观测点B到航线l的距离; (2)求该轮船航行的速度(结果精确到0.1km/h)参考数据:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01) 16.如图,在一笔直的海岸线上有A、B两个观测站,A在B的正东方向,AB=4km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向. (1)求点P到海岸线的距离; (2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号) 17.为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16) 18.如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号). 19.为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行),通道水平宽度BC为8米,∠BCD=135°,通道斜面CD 的长为6米,通道斜面AB的坡度i=1:. (1)求通道斜面AB的长为 米; (2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30°,求此时BE的长.(结果保留根号) 20.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上). (1)求办公楼AB的高度; (2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(精确到1米)(参考数据:sin22°≈,cos22°≈,tan22°≈) 21.如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得∠ACB=60°,∠DCE=30°;沿楼梯向上走到D处测得∠ADF=45°,D到地面BE的距离DE为3米.求教学楼AB的高度.(站果精确列1米,参考数据:1.4,≈1.7) 解直角三角形应用答案 一.解答题(共21小题) 1.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.) 【解答】解:如图,过点C作CD⊥AB,交AB延长线于点D, 设CD=x米, ∵∠CBD=45°,∠BDC=90°, ∴BD=CD=x米, ∵∠A=30°,AD=AB+BD=4+x, ∴tanA=,即=, 解得:x=2+2, 答:该雕塑的高度为(2+2)米. 2.如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数). 【解答】解:过C作CD⊥AB, 在Rt△ACD中,∠A=45°, ∴△ACD为等腰直角三角形, ∴AD=CD=AC=50海里, 在Rt△BCD中,∠B=30°, ∴BC=2CD=100海里, 根据勾股定理得:BD=50海里, 则AB=AD+BD=50+50≈193海里, 则此时船锯灯塔的距离为193海里. 3.2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号) 【解答】解:∵EC∥AD, ∴∠A=30°,∠CBD=45°,CD=200, ∵CD⊥AB于点D. ∴在Rt△ACD中,∠CDA=90°,tanA=, ∴AD=, 在Rt△BCD中,∠CDB=90°,∠CBD=45° ∴DB=CD=200, ∴AB=AD﹣DB=200﹣200, 答:A、B两点间的距离为200﹣200米. 4.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732) 【解答】解:∵∠EAB=60°,∠EAC=30°, ∴∠CAD=60°,∠BAD=30°, ∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD, ∴BC=CD﹣BD=AD=30, ∴AD=15≈25.98. 5.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732) 【解答】解:如图,作BD⊥AC于D, 由题意可得:BD=1400﹣1000=400(米), ∠BAC=30°,∠BCA=45°, 在Rt△ABD中, ∵,即, ∴AD=400(米), 在Rt△BCD中, ∵,即, ∴CD=400(米), ∴AC=AD+CD=400+400≈1092.8≈1093(米), 答:隧道最短为1093米. 6.随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里). 【解答】解:在△APC中,∠ACP=90°,∠APC=45°,则AC=PC. ∵AP=400海里, ∴由勾股定理知,AP2=AC2+PC2=2PC2,即4002=2PC2, 故PC=200海里. 又∵在直角△BPC中,∠PCB=90°,∠BPC=60°, ∴PB==2PC=400≈565.6(海里). 答:此时巡逻舰与观测点P的距离PB约为565.6海里. 7.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长. (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里, 在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里, 在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里. 答:还需航行的距离BD的长为20.4海里. 8.如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km. (1)求景点B与C的距离; (2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号) 【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°, ∴∠C=180°﹣∠CAB﹣∠ABC=30°, ∴∠CAB=∠C=30°, ∴BC=AB=10km, 即景点B、C相距的路程为10km. (2)过点C作CE⊥AB于点E, ∵BC=10km,C位于B的北偏东30°的方向上, ∴∠CBE=60°, 在Rt△CBE中,CE=km. 9.为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732) 【解答】解:作PD⊥AB于D. 设BD=x,则AD=x+200. ∵∠EAP=60°, ∴∠PAB=90°﹣60°=30°. 在Rt△BPD中, ∵∠FBP=45°, ∴∠PBD=∠BPD=45°, ∴PD=DB=x. 在Rt△APD中, ∵∠PAB=30°, ∴CD=tan30°•AD, 即DB=CD=tan30°•AD=x=(200+x), 解得:x≈273.2, ∴CD=273. 答:凉亭P到公路l的距离为273m. 10.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60. 【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形, ∴AE=BC=78,AB=CE, 在Rt△ACE中,EC=AE•tan58°≈125(m) 在RtAED中,DE=AE•tan48°, ∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m), 答:甲、乙建筑物的高度AB为125m,DC为38m. 11.小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73) 【解答】解:如图作AE⊥BD于E. 在Rt△AEB中,∵∠EAB=30°,AB=10m, ∴BE=AB=5(m),AE=5(m), 在Rt△ADE中,DE=AE•tan42°=7.79(m), ∴BD=DE+BE=12.79(m), ∴CD=BD﹣BC=12.79﹣6.5≈6.3(m), 答:标语牌CD的长为6.3m. 12.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号). 【解答】解:作DF⊥AC于F. ∵DF:AF=1:,AD=200米, ∴tan∠DAF=, ∴∠DAF=30°, ∴DF=AD=×200=100, ∵∠DEC=∠BCA=∠DFC=90°, ∴四边形DECF是矩形, ∴EC=BF=100(米), ∵∠BAC=45°,BC⊥AC, ∴∠ABC=45°, ∵∠BDE=60°,DE⊥BC, ∴∠DBE=90°﹣∠BDE=90°﹣60°=30°, ∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°, ∴∠ABD=∠BAD, ∴AD=BD=200米, 在Rt△BDE中,sin∠BDE=, ∴BE=BD•sin∠BDE=200×=100, ∴BC=BE+EC=100+100(米). 13.如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上. (1)求坡底C点到大楼距离AC的值; (2)求斜坡CD的长度. 【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米) 答:坡底C点到大楼距离AC的值是20米. (2)设CD=2x,则DE=x,CE=x, 在Rt△ABC中,∠ABC=30°,则BC===60(米), 在Rt△BDF中,∵∠BDF=45°, ∴BF=DF, ∴60﹣x=20+x, ∴x=40﹣60, ∴CD=2x=80﹣120, ∴CD的长为(80﹣120)米. 14.某次台风袭击了我国西南部海域.如图,台风来临前,我国海上搜救中心A接到一渔船遇险的报警,于是令位于A的正南方向180海里的救援队B立即施救.已知渔船所处位置C在A的南偏东34°方向,在B的南偏东63°方向,此时离台风来到C处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C处对其施救? 【解答】解:过点C作CD⊥AB延长线于点D, ∵∠DAC=34°,∠DBC=63°, ∴设BD=x,则tan63°=,故CD=BDtan63°=xtan63°, ∴tan34°==, 解得:x≈94.3, 故cos63°==, 解得:BC≈207.7, 207.7÷20≈10.4(小时), 答:如果救援船每小时行驶20海里,能在台风来到之前赶到C处对其施救. 15.如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处. (1)求观测点B到航线l的距离; (2)求该轮船航行的速度(结果精确到0.1km/h)参考数据:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01) 【解答】解:(1)设AB与l交于点O. 在Rt△AOD中, ∵∠OAD=60°,AD=2(km), ∴OA==4(km). ∵AB=10(km), ∴OB=AB﹣OA=6(km). 在Rt△BOE中,∠OBE=∠OAD=60°, ∴BE=OB•cos60°=3(km). 答:观测点B到航线l的距离为3km. (2)在Rt△AOD中,OD=AD•tan60°=2(km), 在Rt△BOE中,OE=BE•tan60°=3(km), ∴DE=OD+OE=5(km). 在Rt△CBE中,∠CBE=76°,BE=3(km), ∴CE=BE•tan∠CBE=3tan76°. ∴CD=CE﹣DE=3tan76°﹣5≈3.38(km). ∵5(min)=h, ∴v===12CD=12×3.38≈40.6(km/h). 答:该轮船航行的速度约为40.6km/h. 16.如图,在一笔直的海岸线上有A、B两个观测站,A在B的正东方向,AB=4km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向. (1)求点P到海岸线的距离; (2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号) 【解答】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm. 在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°, ∴BD=PD=xkm. 在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°, ∴AD=PD=xkm. ∵BD+AD=AB, ∴x+x=4, x=2 ﹣2, ∴点P到海岸线l的距离为(2 ﹣2)km; (2)如图,过点B作BF⊥AC于点F. 根据题意得:∠ABC=105°, 在Rt△ABF中,∠AFB=90°,∠BAF=30°, ∴BF=AB=2km. 在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°. 在Rt△BCF中,∠BFC=90°,∠C=45°, ∴BC=BF=2 km, ∴点C与点B之间的距离大约为2km. 17.为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 2.4 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16) 【解答】解:据题意得tanB=, ∵MN∥AD, ∴∠A=∠B, ∴tanA=, ∵DE⊥AD, ∴在Rt△ADE中,tanA=, ∵AD=9, ∴DE=3, 又∵DC=0.5, ∴CE=2.5, ∵CF⊥AB, ∴∠FCE+∠2=90°, ∵DE⊥AD, ∴∠A+∠CEF=90°, ∴∠A=∠FCE, ∴tan∠FCE= 在Rt△CEF中,CE2=EF2+CF2 设EF=x,CF=3x(x>0),CE=2.5, 代入得()2=x2+(3x)2 解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”), ∴CF=3x=≈2.4, ∴该停车库限高2.4米. 故答案为2.4. 18.如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号). 【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F, 在Rt△BFD中, ∵∠DBF=30°,sin∠DBF==,cos∠DBF==, ∵BD=8m, ∴DF=4m,BF=4m, ∵AB∥CD,CE⊥AB,BF⊥CD, ∴四边形BFCE为矩形, ∴BF=CE=4m,CF=BE=CD﹣DF=2m, 在Rt△ACE中,∠ACE=45°, ∴AE=CE=4m, ∴AB=4+2. 答:旗杆AB的高为(4+2)m. 19.为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行),通道水平宽度BC为8米,∠BCD=135°,通道斜面CD 的长为6米,通道斜面AB的坡度i=1:. (1)求通道斜面AB的长为 3 米; (2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30°,求此时BE的长.(结果保留根号) 【解答】解:(1)过点A作AN⊥CB于点N,过点D作DM⊥BC于点M, ∵∠BCD=135°, ∴∠DCM=45°. ∵在Rt△CMD中,∠CMD=90°,CD=6, ∴DM=CM=CD=3, ∴AN=DM=3, ∵通道斜面AB的坡度i=1:, ∴tan∠ABN==, ∴BN=AN=6, ∴AB==3. 即通道斜面AB的长约为3米; 故答案为:3; (2)∵在Rt△MED中,∠EMD=90°,∠DEM=30°,DM=3, ∴EM=DM=3, ∴EC=EM﹣CM=3﹣3, ∴BE=BC﹣EC=8﹣(3﹣3)=8+3﹣3. 即此时BE的长约为(8+3﹣3)米. 20.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上). (1)求办公楼AB的高度; (2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(精确到1米)(参考数据:sin22°≈,cos22°≈,tan22°≈) 【解答】解:(1)过点E作EM⊥AB于点M, 设AB=x, 在Rt△ABF中,∵∠AFB=45°, ∴BF=AB=x, ∴BC=BF+FC=x+20. 在Rt△AEM中, ∵∠AEM=22°,AM=AB﹣CE=x﹣1, tan22°=,即=, 解得,x=15. ∴办公楼AB的高度为15米; (2)在Rt△AME中,∵cos22°=, ∴AE==37米. ∴A,E之间的距离为37米. 21.如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得∠ACB=60°,∠DCE=30°;沿楼梯向上走到D处测得∠ADF=45°,D到地面BE的距离DE为3米.求教学楼AB的高度.(站果精确列1米,参考数据:1.4,≈1.7) 【解答】解:如图, 在Rt△DCE中,∵∠DCE=30°、DE=3, ∴CD=2DE=6, ∵∠ACB=60°, ∴∠ACD=180°﹣∠DCE﹣∠ACB=90°, ∵∠CDF=∠DCE=30°, ∴在Rt△DCF中,DF===4, 设AG=x, ∵∠ADF=45°, ∴DG=AG=x,FG=DG﹣DF=x﹣4, 在Rt△AFG中,∵∠AFG=∠ACB=60°, ∴tan∠AFG=,即=, 解得:x=6+6,即AG=6+6, ∴AB=AG+BG=6+6+3=9+6≈19(米), 答:教学楼AB的高度约为19米. 第30页(共30页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形 应用 专题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文