相似三角形的性质及判定知识点总结+经典题型总结(学生版).doc
《相似三角形的性质及判定知识点总结+经典题型总结(学生版).doc》由会员分享,可在线阅读,更多相关《相似三角形的性质及判定知识点总结+经典题型总结(学生版).doc(15页珍藏版)》请在咨信网上搜索。
Well-known Education 专注于中小学个性化教育 相似三角形的性质及判定 中考要求 板块 考试要求 A级要求 B级要求 C级要求 相似三角形 了解相似三角形 掌握相似三角形的概念,判定及性质,以及掌握相关的模型 会运用相似三角形相关的知识解决有关问题 知识点睛 一、相似的有关概念 1.相似形 具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性 两个相似图形的对应边成比例,对应角相等. 3.相似比 两个相似图形的对应角相等,对应边成比例. 二、相似三角形的概念 1.相似三角形的定义 对应角相等,对应边成比例的三角形叫做相似三角形. 如图,与相似,记作,符号读作“相似于”. 2.相似比 相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”. 三、相似三角形的性质 1.相似三角形的对应角相等 如图,与相似,则有. 2.相似三角形的对应边成比例 与相似,则有(为相似比). 3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比. 如图1,与相似,是中边上的中线,是中边上的中线,则有(为相似比). 图1 如图2,与相似,是中边上的高线,是中边上的高线,则有(为相似比). 图2 如图3,与相似,是中的角平分线,是中的角平分线,则有(为相似比). 图3 4.相似三角形周长的比等于相似比. 如图4,与相似,则有(为相似比).应用比例的等比性质有. 图4 5.相似三角形面积的比等于相似比的平方. 如图5,与相似,是中边上的高线,是中边上的高线,则有(为相似比).进而可得. 图5 四、相似三角形的判定 1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似. 3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似. 5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明) 7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似. 五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式 证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证,横向观察,比例式中的分子的两条线段是和,三个字母恰为的顶点;分母的两条线段是和,三个字母恰为的三个顶点.因此只需证. 2.纵向定型法 欲证,纵向观察,比例式左边的比和中的三个字母恰为的顶点;右边的比两条线段是和中的三个字母恰为的三个顶点.因此只需证. 3.中间比法 由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比. 比例中项式的证明,通常涉及到与公共边有关的相似问题。这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解. 倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之. 复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明. 六、相似证明中常见辅助线的作法 在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论.常见的等量代换包括等线代换、等比代换、等积代换等. 如图:平分交于,求证:. 证法一:过作,交的延长线于. ∴,. ∵,∴.∴. ∵,∴. 点评:做平行线构造成比例线段,利用了“A”型图的基本模型. 证法二;过作的平行线,交的延长线于. ∴,∴. ∵,∴. 点评:做平行线构造成比例线段,利用了“X”型图的基本模型. 七、相似证明中的面积法 面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下: 如图:. 如图:. 如图:. 八、相似证明中的基本模型 例题精讲 一、与三角形有关的相似问题 【例1】 如图,在中,,点在边上,若在增加一个条件就能使,则这个条件可以是 . 【巩固】如图,、是的边、上的点,且,求证:. 【巩固】如图,在中,于,于,的面积是面积的4倍,,求的长. 【例2】 如图,中,,点是内一点,使得,,则 . 【巩固】如图,已知三个边长相等的正方形相邻并排,求. 【例3】 如图,已知中,,,与相交于,则的值为( ) A. B.1 C. D.2 【巩固】在中,,的延长线交的延长线于, 求证:. 【巩固】如图,、为边上的两点,且满足,一条平行于的直线分别交、和的延长线于点、和. 求证:. 【例4】 如图,已知,若,,,求证:. 【巩固】如图,,,垂足分别为、,和相交于点,,垂足为.证明:. 【巩固】如图,已知,找出、、之间的关系,并证明你的结论. 【例5】 如图,在四边形中,与相交于点,直线平行于,且与、、、 及的延长线分别相交于点、、、和.求证: 【巩固】已知,如图,四边形,两组对边延长后交于、,对角线,的延长线交于.求证:. 【考点】相似三角形的性质与判定 【难度】5星 【题型】解答 【关键词】 【例6】 如图, 中,,若分别是的中点,则; 若分别是的中点,则; 若分别是的中点,则; ………… 若分别是的中点,则_________. 【例7】 如图,内有一点,过作各边的平行线,把分成三个三角形和三个平行四边形.若三个三角形的面积分别为,则的面积是 . 【例8】 如图,梯形的两条对角线与两底所围成的两个三角形的面积分别为,则梯形的面积是( ) A. B. C. D. 【巩固】如图,梯形中,,两条对角线、相交于,若,那么 . 二、与平行四边形有关的相似问题 【例9】 如图,已知平行四边形中,过点的直线顺次与、及的延长线相交于点、、,若,,则的长是 . 【巩固】如图,已知,,求证:. 【例10】 如图,的对角线相交于点,在的延长线上任取一点,连接交于点,若,求的值. 【巩固】如图:矩形的面积是36,在边上分别取点,使得,,且与的交点为点,求的面积。 三、与梯形有关的相似问题 【例11】 已知:如图,在梯形中,,是的中点,分别连接、、、,且与交于点,与交于. (1)求证: (2)若,,求的长. 【巩固】如图,在梯形中,,分别是的中点,交于,交于,求的长. 【例12】 如图,已知梯形中,,,,,(),,交于点,连接. (1)判断与,与是否分别一定相似,若相似,请加以证明. (2)如果不一定相似,请指出、满足什么关系时,它们就能相似. 四、与内接矩形有关的相似问题 【例13】 中,正方形的两个顶点、在上,另两个顶点、分别在、上,,边上的高,求. 【巩固】如图,已知中,,四边形为正方形,其中在边上,在上,求正方形的边长. 【例14】 如图,已知中,四边形为正方形,在线段上,在上,如果,,求的面积. 【巩固】如图,在中,,,,动点(与点,不重合)在边上,∥交于点. ⑴当的面积与四边形的面积相等时,求的长. ⑵当的周长与四边形的周长相等时,求的长. ⑶试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出的长. 课后作业 1. 直线与的边相交于点,与边相交于点,下列条件:①;②;③;④中,能使与相似的条件有( ) A.1个 B.2个 C.3个 D.4个 2. 如图,在的边上取一点,在取一点,使,直线和的延长线相交于,求证: 3. 已知:为的中位线上任意一点,、的延长线分别交对边、于、,求证: 4. 如图,已知在矩形中,为的中点,交于,连接(). (1)与是否相似,若相似,证明你的结论;若不相似,请说明理由. (2)设是否存在这样的值,使得∽,若存在,证明你的结论并求出值;若不存在,说明理由. 5. 如图,在梯形中,,,,若,且梯形与梯形的周长相等,求的长. 6. 如图,已知中,,四边形为正方形,其中在边上,在上,求正方形的边长. 华侨城校区:华侨城中新街樱花阁103(何香凝美术馆天桥对面) 电话:26605211- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 性质 判定 知识点 总结 经典 题型 学生
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文