初中数学二次函数做题技巧.doc
《初中数学二次函数做题技巧.doc》由会员分享,可在线阅读,更多相关《初中数学二次函数做题技巧.doc(11页珍藏版)》请在咨信网上搜索。
实用文档 初中数学二次函数做题技巧 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 Δ= b^2-4ac<0时,抛物线与x轴没有交点。 V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。 画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点如果图像经过原点,并且对称轴是y轴,则设y=ax^ 2;如果对称轴是y轴,但不过原点,则设y=ax^2+k 定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 中考数学精选例题解析:一次函数(1) 知识考点: 掌握二次函数的图像和性质以及抛物线的平移规律;会确定抛物线的顶点坐标、对称轴及最值等。 精典例题: 【例1】二次函数的图像如图所示,那么、、、这四个代数式中,值为正的有( ) A、4个 B、3个 C、2个 D、1个 解析:∵<1 ∴>0 答案:A 评注:由抛物线开口方向判定的符号,由对称轴的位置判定的符号,由抛物线与轴交点位置判定的符号。由抛物线与轴的交点个数判定的符号,若轴标出了1和-1,则结合函数值可判定、、的符号。 【例2】已知,≠0,把抛物线向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。 分析:①由可知:原抛物线的图像经过点(1,0);②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。 解:可设新抛物线的解析式为,则原抛物线的解析式为,又易知原抛物线过点(1,0) ∴,解得 ∴原抛物线的解析式为: 评注:解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。 另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:①开口反向(或旋转1800),此时顶点坐标不变,只是反号;②两抛物线关于轴对称,此时顶点关于轴对称,反号;③两抛物线关于轴对称,此时顶点关于轴对称; 探索与创新: 【问题】已知,抛物线(、是常数且不等于零)的顶点是A,如图所示,抛物线的顶点是B。 (1)判断点A是否在抛物线上,为什么? (2)如果抛物线经过点B,①求的值;②这条抛物线与轴的两个交点和它的顶点A能否构成直角三角形?若能,求出它的值;若不能,请说明理由。 解析:(1)抛物线的顶点A(,),而当时,=,所以点A在抛物线上。 (2)①顶点B(1,0),,∵,∴;②设抛物线与轴的另一交点为C,∴B(1,0),C(,0),由抛物线的对称性可知,△ABC为等腰直角三角形,过A作AD⊥轴于D,则AD=BD。当点C在点B的左边时,,解得或(舍);当点C在点B的右边时,,解得或(舍)。故。 评注:若抛物线的顶点与轴两交点构成的三角形是直角三角形时,它必是等腰直角三角形,常用其“斜边上的中线(高)等于斜边的一半”这一关系求解有关问题。 跟踪训练: 一、选择题: 1、二次函数的图像如图所示,OA=OC,则下列结论: ①<0; ②; ③; ④; ⑤; ⑥。其中正确的有( ) A、2个 B、3个 C、4个 D、5个 2、二次函数的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为,则与分别等于( ) A、6、4 B、-8、14 C、4、6 D、-8、-14 3、如图,已知△ABC中,BC=8,BC边上的高,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为,△DEF的面积为,那么关于的函数图像大致是( ) A B C D 4、若抛物线与四条直线,,,围成的正方形有公共点,则的取值范围是( ) A、≤≤1 B、≤≤2 C、≤≤1 D、≤≤2 5、如图,一次函数与二次函数的大致图像是( ) A B C D 二、填空题: 1、若抛物线的最低点在轴上,则的值为 。 2、二次函数,当时,随的增大而减小;当时,随的增大而增大。则当时,的值是 。 3、已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是轴,向下平移1个单位后与轴只有一个交点,则此二次函数的解析式为 。 4、已知抛物线的对称轴是,且它的最高点在直线上,则它的顶点为 ,= 。 三、解答题: 1、已知函数的图像过点(-1,15),设其图像与轴交于点A、B,点C在图像上,且,求点C的坐标。 2、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程。下面的二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间(月)之间的关系(即前个月的利润总和S与之间的关系)。根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润S(万元)与时间(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元? 3、抛物线,和直线(>0)分别交于A、B两点,已知∠AOB=900。 (1)求过原点O,把△AOB面积两等分的直线解析式; (2)为使直线与线段AB相交,那么值应是怎样的范围才适合? 4、如图,抛物线与轴的一个交点为A(-1,0)。 (1)求抛物线与轴的另一个交点B的坐标; (2)D是抛物线与轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式; (3)E是第二象限内到轴、轴的距离的比为5∶2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧。问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由。 参考答案 一、选择题:BCDDC 二、填空题: 1、2;2、-7;3、;4、(2,2),; 三、解答题: 1、C(,1)或(,1)、(3,-1) 2、(1);(2)10月;(3)5.5万元 3、(1);(2)-3≤≤0 4、(1)B(-3,0);(2)或; (3)在抛物线的对称轴上存在点P(-2,),使△APE的周长最小。 中考数学精选例题解析 函数与一元二次方程 知识考点: 1、理解二次函数与一元二次方程之间的关系; 2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与轴的交点情况; 3、会利用韦达定理解决有关二次函数的问题。 精典例题: 【例1】已抛物线(为实数)。 (1)为何值时,抛物线与轴有两个交点? (2)如果抛物线与轴相交于A、B两点,与轴交于点C,且△ABC的面积为2,求该抛物线的解析式。 分析:抛物线与轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根应满足的条件。 略解:(1)由已知有,解得且 (2)由得C(0,-1) 又∵ ∴ ∴或 ∴或 【例2】已知抛物线。 (1)求证:不论为任何实数,抛物线与轴有两个不同的交点,且这两个点都在轴的正半轴上; (2)设抛物线与轴交于点A,与轴交于B、C两点,当△ABC的面积为48平方单位时,求的值。 (3)在(2)的条件下,以BC为直径作⊙M,问⊙M是否经过抛物线的顶点P? 解析:(1),由,可得证。 (2) = 又∵ ∴ 解得或(舍去) ∴ (3),顶点(5,-9), ∵ ∴⊙M不经过抛物线的顶点P。 评注:二次函数与二次方程有着深刻的内在联系,因此,善于促成二次函数问题与二次方程问题的相互转化,是解相关问题的常用技巧。 探索与创新: 【问题】如图,抛物线,其中、、分别是△ABC的∠A、∠B、∠C的对边。 (1)求证:该抛物线与轴必有两个交点; (2)设有直线与抛物线交于点E、F,与轴交于点M,抛物线与轴交于点N,若抛物线的对称轴为,△MNE与△MNF的面积之比为5∶1,求证:△ABC是等边三角形; (2)当时,设抛物线与轴交于点P、Q,问是否存在过P、Q两点且与轴相切的圆?若存在这样的圆,求出圆心的坐标;若不存在,请说明理由。 解析:(1) ∵, ∴ (2)由得 由得: 设E(,),F(,),那么:, 由∶=5∶1得: ∴或 由知应舍去。 由解得 ∴,即 ∴ 或(舍去) ∴ ∴△ABC是等边三角形。 (3),即 ∴或(舍去) ∴,此时抛物线的对称轴是,与轴的两交点坐标为P(,0),Q(,0) 设过P、Q两点的圆与轴的切点坐标为(0,),由切割线定理有: ∴ 故所求圆的圆心坐标为(2,-1)或(2,1) 评注:本题(1)(2)问与函数图像无关,而第(3)问需要用前两问的结论,解题时千万要认真分析前因后果。同时,如果后一问的解答需要前一问的结论时,尽管前一问没有解答出来,倘能会用前一题的结论来解答后一问题,也是得分的一种策略。 跟踪训练: 一、选择题: 1、已知抛物线与轴两交点在轴同侧,它们的距离的平方等于,则的值为( ) A、-2 B、12 C、24 D、-2或24 2、已知二次函数(≠0)与一次函数(≠0)的图像交于点A(-2,4),B(8,2),如图所示,则能使成立的的取值范围是( ) A、 B、 C、 D、或 3、如图,抛物线与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系:①;②;③;④其中正确的有( ) A、4个 B、3个 C、2个 D、1个 4、设函数的图像如图所示,它与轴交于A、B两点,线段OA与OB的比为1∶3,则的值为( ) A、或2 B、 C、1 D、2 二、填空题: 1、已知抛物线与轴交于两点A(,0),B(,0),且,则= 。 2、抛物线与轴的两交点坐标分别是A(,0),B(,0),且,则的值为 。 3、若抛物线交轴于A、B两点,交轴于点C,且∠ACB=900,则= 。 4、已知二次函数与轴交点的横坐标为、,则对于下列结论:①当时,;②当时,;③方程=0有两个不相等的实数根、;④,;⑤,其中所有正确的结论是 (只填写顺号)。 三、解答题: 1、已知二次函数(≠0)的图像过点E(2,3),对称轴为,它的图像与轴交于两点A(,0),B(,0),且,。 (1)求这个二次函数的解析式; (2)在(1)中抛物线上是否存在点P,使△POA的面积等于△EOB的面积?若存在,求出点P的坐标;若不存在,请说明理由。 2、已知抛物线与轴交于点A(,0),B(,0)两点,与轴交于点C,且,,若点A关于轴的对称点是点D。 (1)求过点C、B、D的抛物线解析式; (2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD与△CBD的面积相等,求直线PH的解析式; 3、已知抛物线交轴于点A(,0),B(,0)两点,交轴于点C,且,。 (1)求抛物线的解析式; (2)在轴的下方是否存在着抛物线上的点,使∠APB为锐角、钝角,若存在,求出P点的横坐标的范围;若不存在,请说明理由。 参考答案 一、选择题:CDBD 二、填空题: 1、2;2、;3、3;4、①③④ 三、解答题: 1、(1);(2)存在,P(,-9)或(,-9) 2、(1);(2) 3、(1);(2)当时∠APB为锐角,当或时∠APB为钝角。 聚能教育 文案大全- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 二次 函数 技巧
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文