高中数学必修5知识点总结及经典例题.docx
《高中数学必修5知识点总结及经典例题.docx》由会员分享,可在线阅读,更多相关《高中数学必修5知识点总结及经典例题.docx(17页珍藏版)》请在咨信网上搜索。
<p><span id="_baidu_bookmark_start_0" style="display: none; line-height: 0px;"></span>必修5知识点总结 1、 正弦定理:在中,、、分别为角、、的对边,为的外接圆的半径,则有. 2、正弦定理的变形公式:①,,; ②,,;③; ④. (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC中,已知a、b、A(A为锐角)求B。具体的做法是:数形结合思想 D bsinA A b a C 画出图:法一:把a扰着C点旋转,看所得轨迹以AD有无交点: 当无交点则B无解、 当有一个交点则B有一解、 当有两个交点则B有两个解。 法二:是算出CD=bsinA,看a的情况: 当a<bsinA,则B无解 当bsinA</p><a≤b,则b有两解 a="bsinA或a">b时,B有一解 注:当A为钝角或是直角时以此类推既可。 2、 三角形面积公式:. 4、余弦定理:在中,有,, . 5、余弦定理的推论:,,. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设、、是的角、、的对边,则:①若,则; C A B D ②若,则;③若,则. 正余弦定理的综合应用:如图所示:隔河看两目标A、B, 但不能到达,在岸边选取相距千米的C、D两点, 并测得∠ACB=75O, ∠BCD=45O, ∠ADC=30O, ∠ADB=45O(A、B、C、D在同一平面内),求两目标A、B之间的距离。 本题解答过程略 附:三角形的五个“心”; 重心:三角形三条中线交点. 外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点. 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:an+1>an). 12、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:an+1<an). 1="an)." .="" 2.="" 3.="" sn="">0,d<0时,满足的项数m使得取最大值. (2)当<0,d>0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。 附:数列求和的常用方法 1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 2.裂项相消法:适用于其中{ }是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。 例题:已知数列{an}的通项为an=,求这个数列的前n项和Sn. 解:观察后发现:an= ∴ 3.错位相减法:适用于其中{ }是等差数列,是各项不为0的等比数列。 例题:已知数列{an}的通项公式为,求这个数列的前n项之和。 解:由题设得: = 即 = ① 把①式两边同乘2后得 = ② 用①-②,即: = ① = ② 得 ∴ 4.倒序相加法: 类似于等差数列前n项和公式的推导方法. 5.常用结论 1): 1+2+3+...+n = 2)1+3+5+...+(2n-1) = 3) 4) 5) 6) 31、;;. 32、不等式的性质:①;②;③; ④,;⑤; ⑥;⑦; ⑧. 33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是的不等式. 34、含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式(高次不等式)的解法 穿根法(零点分段法) 求解不等式: 解法:①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间. 1="" 4="" x="" x1="" x2="" x3="" xn-2="" xn-1="" xn="" -2="" ax="">b解的讨论; ②一元二次不等式ax2+bx+c>0(a>0)解的讨论. 二次函数 ()的图象 一元二次方程 有两相异实根 有两相等实根 无实根 R 对于a<0的不等式可以先把a化为正后用上表来做即可。>0(或<0);≥0(或≤0)的形式, (2)转化为整式不等式(组) 例题:求解不等式: 解:略 例题:求不等式的解集。 3.含绝对值不等式的解法: 基本形式: ①型如:|x|<a (a>0) 的不等式 的解集为: ②型如:|x|>a (a>0) 的不等式 的解集为: 变型: 解得。其中-c<ax+b<c等价于不等式组 在解-c<ax+b<c得注意a的符号 2="" 3="" 5="10" .="" x="" y="" o="" c="0(a">0)的实根的分布常借助二次函数图像来分析: 设ax2+bx+c=0的两根为,f(x)=ax2+bx+c,那么: 对称轴x= y o x ①若两根都大于0,即,则有 对称轴x= o x y ②若两根都小于0,即,则有 o y x ③若两根有一根小于0一根大于0,即,则有 X= n x m o y ④若两根在两实数m,n之间,即, 则有 X= y o m t n x ⑤若两个根在三个实数之间,即, 则有 常由根的分布情况来求解出现在a、b、c位置上的参数 例如:若方程有两个正实数根,求的取值范围。 解:由①型得 所以方程有两个正实数根时,。 又如:方程的一根大于1,另一根小于1,求的范围。 解:因为有两个不同的根,所以由 35、二元一次不等式:含有两个未知数,并且未知数的次数是的不等式. 36、二元一次不等式组:由几个二元一次不等式组成的不等式组. 37、二元一次不等式(组)的解集:满足二元一次不等式组的和的取值构成有序数对,所有这样的有序数对构成的集合. 38、在平面直角坐标系中,已知直线,坐标平面内的点. ①若,,则点在直线的上方. ②若,,则点在直线的下方. 39、在平面直角坐标系中,已知直线. (一)由B确定: ①若,则表示直线上方的区域;表示直线下方的区域. ②若,则表示直线下方的区域;表示直线上方的区域. (二)由A的符号来确定: 先把x的系数A化为正后,看不等号方向: ①若是“>”号,则所表示的区域为直线l:的右边部分。 ②若是“<”号,则所表示的区域为直线l:的左边部分。 (三)确定不等式组所表示区域的步骤: ①画线:画出不等式所对应的方程所表示的直线 ②定测:由上面(一)(二)来确定 ③求交:取出满足各个不等式所表示的区域的公共部分。 例题:画出不等式组所表示的平面区域。 解:略 40、线性约束条件:由,的不等式(或方程)组成的不等式组,是,的线性约束条件. 目标函数:欲达到最大值或最小值所涉及的变量,的解析式. 线性目标函数:目标函数为,的一次解析式. 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解. 可行域:所有可行解组成的集合. 最优解:使目标函数取得最大值或最小值的可行解. 41、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数. 42、均值不等式定理:若,,则,即. 43、常用的基本不等式:①;②;③; ④. 44、极值定理:设、都为正数,则有: ⑴若(和为定值),则当时,积取得最大值.⑵若(积为定值),则当时,和取得最小值. 例题:已知,求函数的最大值。 解:∵,∴ 由原式可以化为: 当,即时取到“=”号 也就是说当时有 17</ax+b<c得注意a的符号><!--0的不等式可以先把a化为正后用上表来做即可。--><!--0”,则找“线”在x轴下方的区间.--><!--0)形式,并将各因式x的系数化“+”;(为了统一方便)--><!--0,d--></an).></a≤b,则b有两解>- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结 经典 例题 很好 资料 家教 专用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文