高中数学必修一知识点总结(全).doc
《高中数学必修一知识点总结(全).doc》由会员分享,可在线阅读,更多相关《高中数学必修一知识点总结(全).doc(12页珍藏版)》请在咨信网上搜索。
第一章 集合与函数概念 课时一:集合有关概念 1. 集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2. 一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3. 集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xÎR| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aÎA (2)元素不在集合里,则元素不属于集合,即:a A u 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 课时二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA) 注意:有两种可能(1)A是B的一部分,; (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AÍA ②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作AB(或BA) 或若集合AÍB,存在xB且x A,则称集合A是集合B的真子集。 ③如果 AÍB, BÍC ,那么 AÍC ④ 如果AÍB 同时 BÍA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n个元素的集合,含有2n个子集,2n-1个真子集 课时三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB ={x|xA,或xB}). 全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作, CSA= 韦恩图示 S A 性 质 A ∩ A=A A ∩Φ=Φ A ∩B=BA A ∩BA A ∩BB AUA=A AUΦ=A AUB=BUA AUBA AUBB (CuA)∩(CuB)= Cu(AUB) (CuA) U (CuB)= Cu(A∩B) AU(CuA)=U A∩(CuA)=Φ. 课时四:函数的有关概念 1. 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A. (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 2. 函数的三要素:定义域、值域、对应法则 3. 函数的表示方法:(1)解析法:明确函数的定义域 (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。 4、函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换。 (3)函数图像变换的特点: 1)函数y=f(x) 关于X轴对称y=-f(x) 2)函数y=f(x) 关于Y轴对称y=f(-x) 3)函数y=f(x) 关于原点对称y=-f(-x) 课时五:函数的解析表达式,及函数定义域的求法 1、函数解析式子的求法 (1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)、求函数的解析式的主要方法有: 1)代入法: 2)待定系数法: 3)换元法: 4)拼凑法: 2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) 4、区间的概念: (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示 课时六: 1.值域 : 先考虑其定义域 (1)观察法:直接观察函数的图像或函数的解析式来求函数的值域; (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。 (3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。 (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。 课时七 1.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 (4)常用的分段函数 1)取整函数: 2)符号函数: 3)含绝对值的函数: 2.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数 课时八函数的单调性(局部性质)及最值 1、增减函数 (1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间. (2)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种 2、 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3、函数单调区间与单调性的判定方法 (A) 定义法: 任取x1,x2∈D,且x1<x2; 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)-f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 课时九:函数的奇偶性(整体性质) (1)、偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)、奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)、具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断; 确定f(-x)与f(x)的关系; 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. (4)利用奇偶函数的四则运算以及复合函数的奇偶性 1)在公共定义域内,偶函数的加减乘除仍为偶函数; 奇函数的加减仍为奇函数; 奇数个奇函数的乘除认为奇函数; 偶数个奇函数的乘除为偶函数; 一奇一偶的乘积是奇函数; 2)复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称, (1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 课时十、函数最值及性质的应用 1、函数的最值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 2、函数的奇偶性与单调性 奇函数在关于原点对称的区间上有相同的单调性; 偶函数在关于原点对称的区间上有相反的单调性。 3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。 4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。 5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。 课时十四 1、 指数与指数幂的运算: 复习初中整数指数幂的运算性质: am*an=am+n (am)n=amn (a*b)n=anbn 2、根式的概念:一般地,若,那么叫做的次方根,其中>1,且∈*. 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。此时,a的n次方根用符号 表示。 当n为偶数时,正数的n次方根有两个,这两个数互为相反数。此时正数a的正的n次方根用符号 表示,负的n的次方根用符号 表示。正的n次方根与负的n次方根可以合并成 (a>0)。 注意:负数没有偶次方根;0的任何次方根都是0,记作。 当是奇数时,,当是偶数时, 式子 叫做根式,这里n叫做根指数,a叫做被开方数。 3、 分数指数幂 正数的分数指数幂的 , 0的正分数指数幂等于0,0的负分数指数幂没有意义 4、 有理数指数米的运算性质 (1)· ; (2) ; (3) . 5、无理数指数幂 一般的,无理数指数幂aa(a>0,a是无理数)是一个确定的实数。有理数指数幂的运算性质同样使用于无理数指数幂。 课时十五:指数函数的性质及其特点(1) 1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么? 2、在同以坐标平面内画出下列函数的图像: (1) (2) (3) (4) (5) 图像特征 图像特征 a>1 a>1 0<a<1 a>1 向X、Y轴正负方向无限延伸 函数的定义域为R 图像关于原点和Y轴不对称 非奇非偶函数 函数图像都在X轴的上方 函数的值域为R+ 函数图象都过定点(0,1) a0=1 自左向右看图像逐渐上升。 自左向右看图像逐渐上升。 增函数 减函数 在第一象限内图像纵坐标都大于1。 在第一象限内图像纵坐标都大于1。 x>0,ax>1 x>0, ax <1 在第二象限内图像纵坐标都小于1。 在第二象限内图像纵坐标都大于1。 x<0,ax <1 x<0,ax>1 图像上升的趋势愈来愈陡。 图像上升的趋势愈来愈陡。 函数值开始增加较慢,到了某一值后增长速度极快。 函数值开始减小极快,到了某一值后减小速度较慢。 课时十六:指数函数的性质及其特点(1) 指数函数的图象和性质 a>1 0<a<1 定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上,值域是或; (2)若,则;取遍所有正数当且仅当; (3)对于指数函数,总有; (4)当a>1时,若X1<X2 ,则有f(X1)<f(X2)。 二、对数函数 (一)对数 1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(— 底数,— 真数,— 对数式) 说明: 注意底数的限制,且; ; 注意对数的书写格式. 两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数. u 指数式与对数式的互化 幂值 真数 = N= b 底数 指数 对数 (二)对数的运算性质 如果,且,,,那么: ·+; -; . 注意:换底公式 (,且;,且;). 利用换底公式推导下面的结论 (1);(2). (二)对数函数 1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞). 注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数. 对数函数对底数的限制:,且. 2、对数函数的性质: a>1 0<a<1 定义域x>0 定义域x>0 值域为R 值域为R 在R上递增 在R上递减 函数图象都过定点(1,0) 函数图象都过定点(1,0) (三)幂函数 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 12- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文