-中考二次函数压轴试题分类汇编及答案.doc
《-中考二次函数压轴试题分类汇编及答案.doc》由会员分享,可在线阅读,更多相关《-中考二次函数压轴试题分类汇编及答案.doc(16页珍藏版)》请在咨信网上搜索。
中考二次函数压轴题分类汇编 一. 极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分. 点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2, ∴A(﹣4,0),S△ABC=AB•OC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S△PBE=(2﹣x)2. S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2 =x2﹣x+ =(x+1)2+3 ∴当x=﹣1时,S△PCE的最大值为3. (3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示. DO=DM=DA=2, ∴∠OAC=∠AMD=45°, ∴∠ADM=90°, ∴M点的坐标为(﹣2,﹣2); (II)当MD=MO时,如答图②所示. 过点M作MN⊥OD于点N,则点N为OD的中点, ∴DN=ON=1,AN=AD+DN=3, 又△AMN为等腰直角三角形,∴MN=AN=3, ∴M点的坐标为(﹣1,﹣3); (III)当OD=OM时, ∵△OAC为等腰直角三角形, ∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为. ∵>2,∴OD=OM的情况不存在. 综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3). 点评:本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类讨论的数学思想.第(2)问将面积的最值转化为二次函数的极值问题,注意其中求面积表达式的方法;第(3)问重在考查分类讨论的数学思想,注意三种可能的情形需要一一分析,不能遗漏. 二. 构成图形的问题 1.如图,抛物线y=ax2+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E2-1-c-n-j-y (1)求抛物线的解析式; (2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由; (3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。 考点:二次函数综合题. 分析:(1)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式; (2)设存在点K,使得四边形ABFC的面积为17,根据点K在抛物线y=-x2+2x+3上设点K的坐标为:(x,-x2+2x+3),根据S四边形ABKC=S△AOC+S梯形ONKC+S△BNK得到有关x的一元二次方程求出x即可.. (3)将x=1代入抛物线解析式,求出y的值,确定出D坐标,将x=1代入直线BC解析式求出y的值,确定出E坐标,求出DE长,将x=m代入抛物线解析式表示出F纵坐标,将x=m代入直线BC解析式表示出P纵坐标,两纵坐标相减表示出线段PQ,由DE与QP平行,要使四边形PEDQ为平行四边形,只需DE=PQ,列出关于m的方程,求出方程的解得到m的值,检验即可. 解:(1)由抛物线经过点C(O,4)可得c=4,① ∵对称轴x= =1,∴b=-2a,②, 又抛物线过点A(一2,O)∴0=4a-2b+c,③ 由①②③ 解得:a=, b=1 ,c=4. 所以抛物线的解析式是y=x+x+4 (2)假设存在满足条件的点F,如图如示,连接BF、CF、OF. 过点F分别作FH⊥x轴于H , FG⊥y轴于G. 设点F的坐标为(t, t2+t+4),其中O<t<4, 则FH=t2 +t+4 FG=t, ∴△OBF=OB.FH=×4×(t2+4t+4)=一t2+2t+8 ,S△OFC=OC.FC=×4×t=2t ∴S四边形ABFC—S△AOC+S△OBF +S△OFC=4-t2+2t+8+2t=-t2+4t+12. 令一t2+4t+12 =17,即t2-4t+5=0,则△=(一4)2-4×5=一4<0, ∴方程t2 -4t+5=0无解,故不存在满足条件的点F. (3)设直线BC的解析式为y=kx+b(k≠O),又过点B(4,0,), C(0,4) 所以,解得:, 所以直线BC的解析式是y=一x+4. 由y=x2+4x+4=一(x一1)2+,得D(1,), 又点E在直线BC上,则点E(1,3),于是DE=一3= . 若以D.E.P.Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ, 设点P的坐标是(m,一m+4),则点Q的坐标是(m,一t2+m+4). ①当O<m<4时,PQ=(一t2+m+4)一(一m+4)=一m2+2m. 由一m2+2m= ,解得:m=1或3.当m=1时,线段PQ与DE重合,m=-1舍去, ∴m=-3,此时P1 (3,1). ②当m<o或m>4时,PQ=(一m+4)一(一m2++m+4)= m2—2m, 由m2—2m=,解得m=2±,经检验适合题意, 此时P2(2+,2一),P3(2一,2+). 综上所述,满足条件的点P有三个,分别是P1 (3,1),P2(2+,2 -),P3(2—,2十). 点评:此题考查了二次函数综合题,涉及的知识有:坐标与图形性质,一次函数与坐标轴的交点,抛物线与坐标轴的交点,平行四边形的判定,以及待定系数法求函数解析式,熟练掌握待定系数法是解本题第二问的关键.本题逻辑思维性强,需要耐心和细心,是道好题. 2.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形. (1)试求b,c的值,并写出该二次函数表达式; (2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问: ①当P运动到何处时,有PQ⊥AC? ②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少? 考点: 二次函数综合题.3338333 分析: (1)根据一次函数解析式求出点A、点C坐标,再由△ABC是等腰三角形可求出点B坐标,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式. (2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置; ②只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,利用配方法求出最大值,即可得出四边形PDCQ的最小值,也可确定点P的位置. 解答: 解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0), ∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形, ∴D点坐标为(8,3), 将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得, 解得:, 故该二次函数解析式为:y=x2﹣x﹣3. (2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t, ∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=, 解得:t=. 即当点P运动到距离A点个单位长度处,有PQ⊥AC. ②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12, ∴当△APQ的面积最大时,四边形PDCQ的面积最小, 当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t, 设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得:=, 解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+, ∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=, 故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为. 三. 翻转问题 1.已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数. (1)求k的值; (2)当次方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标; (3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b的值. 考点: 二次函数综合题.. 分析: (1)先根据一元二次方程根的情况利用判别式与0的关系可以求出k的值; (2)利用m先表示出M与N的坐标,再根据两点间的距离公式表示出MN的长度,根据二次函数的极值即可求出MN的最大长度和M的坐标; (3)根据图象的特点,分两种情况讨论,分别求出b的值即可. 解答: 解:(1)∵关于x的一元二次方程有两个不相等的实数根. ∴. ∴k﹣1<2. ∴k<3. ∵k为正整数, ∴k为1,2. (2)把x=0代入方程得k=1, 此时二次函数为y=x2+2x, 此时直线y=x+2与二次函数y=x2+2x的交点为A(﹣2,0),B(1,3) 由题意可设M(m,m+2),其中﹣2<m<1, 则N(m,m2+2m), MN=m+2﹣(m2+2m)=﹣m2﹣m+2=﹣. ∴当m=﹣时,MN的长度最大值为. 此时点M的坐标为. (3)当y=x+b过点A时,直线与新图象有3个公共点(如图2所示), 把A(﹣2,0)代入y=x+b得b=1, 当y=x+b与新图象的封闭部分有一个公共点时,直线与新图象有3个公共点. 由于新图象的封闭部分与原图象的封闭部分关于x轴对称,所以其解析式为y=﹣x2﹣2x ∴有一组解,此时有两个相等的实数根, 则所以b=, 综上所述b=1或b=. 点评: 本题是二次函数综合题型,主要考查了根的判别式的应用,还考查了两函数图象的交点问题,难点在于(3)求出直线与抛物线有3个交点的情况,根据题意分类讨论,并且作出图形更利于解决问题. 四.平移和取值问题 1.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点. (1)试求抛物线的解析式; (2)记抛物线顶点为D,求△BCD的面积; (3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围. 解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2. (2)∵y=x2﹣x+2=(x﹣1)2+. ∴顶点坐标(1,), ∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3), ∴S△BDC=S△BDH+S△DHC=•3+•1=3. (3)由消去y得到x2﹣x+4﹣2b=0, 当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=, 当直线y=﹣x+b经过点C时,b=3, 当直线y=﹣x+b经过点B时,b=5, ∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点, ∴<b≤3. 2.如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点. (1)求抛物线的解析式; (2)若直线平分四边形的面积,求的值. (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由. 答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以,所以3a+3b=1.5,即a+b=0.5, 又,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以. (2)由(1)知,令x=0,得c(0,1.5),所以CD//AB, 令kx-2=1.5,得l与CD的交点F(), 令kx-2=0,得l与x轴的交点E(), 根据S四边形OEFC=S四边形EBDF得:OE+CF=DF+BE, 即: (3)由(1)知 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为 假设在y轴上存在一点P(0,t),t>0,使直线PM与PN关于y轴对称,过点M、N分别向y轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO=∠NPO,所以Rt△MPM1∽Rt△NPN1, 所以,………………(1) 不妨设M(xM,yM)在点N(xN,yN)的左侧,因为P点在y轴正半轴上, 则(1)式变为,又yM =k xM-2, yN=k xN-2, 所以(t+2)(xM +xN)=2k xM xN,……(2) 把y=kx-2(k≠0)代入中,整理得x2+2kx-4=0, 所以xM +xN=-2k, xM xN=-4,代入(2)得t=2,符合条件, 故在y轴上存在一点P(0,2),使直线PM与PN总是关于y轴对称. 考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大. 点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。 五.相似图形问题 1.如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q. (1)求抛物线的解析式; (2)当0<t≤8时,求△APC面积的最大值; (3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由. 考点: 二次函数综合题.菁优网版权所有 分析: (1)认真审题,直接根据题意列出方程组,求出B,C两点的坐标,进而可求出抛物线的解析式; (2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值; (3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解. 解答: 解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根, ∴x1+x2=8, 由 解得: ∴B(2,0)、C(6,0) 则4m﹣16m+4m+2=0, 解得:m=, ∴该抛物线解析式为:y=; (2)可求得A(0,3) 设直线AC的解析式为:y=kx+b, ∵ ∴ ∴直线AC的解析式为:y=﹣x+3, 要构成△APC,显然t≠6,分两种情况讨论: ①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣), ∵P(t,),∴PF=, ∴S△APC=S△APF+S△CPF = = =, 此时最大值为:, ②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣), ∵P(t,),∴PM=, ∴S△APC=S△APF﹣S△CPF= = =, 当t=8时,取最大值,最大值为:12, 综上可知,当0<t≤8时,△APC面积的最大值为12; (3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2, Q(t,3),P(t,), ①当2<t≤6时,AQ=t,PQ=, 若:△AOB∽△AQP,则:, 即:, ∴t=0(舍),或t=, 若△AOB∽△PQA,则:, 即:, ∴t=0(舍)或t=2(舍), ②当t>6时,AQ′=t,PQ′=, 若:△AOB∽△AQP,则:, 即:, ∴t=0(舍),或t=, 若△AOB∽△PQA,则:, 即:, ∴t=0(舍)或t=14, ∴t=或t=或t=14. 点评: 本题主要考查了抛物线解析式的求法,以及利用配方法等知识点求最值的问题,还考查了三角形相似的问题,是一道二次函数与几何问题结合紧密的题目,要注意认真总结. 2.如图,在平面直角坐标系中,抛物线经过平移 得到抛物线,其对称轴与两段抛物线弧所围成 的阴影部分的面积为( ). A. B. C. D. 【解析】依据平移的定义及抛物线的对称性可得: 区域D的面积=区域C的面积=区域B的面积, ∴阴影面积=区域A的面积加上区域D的面积=正方形的面积4.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 二次 函数 压轴 试题 分类 汇编 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文