高三年级一轮复习函数专题1---函数的基本性质.doc
《高三年级一轮复习函数专题1---函数的基本性质.doc》由会员分享,可在线阅读,更多相关《高三年级一轮复习函数专题1---函数的基本性质.doc(16页珍藏版)》请在咨信网上搜索。
1、. . . . 函数专题1、函数的基本性质复习提问:1、 如何判断两个函数是否属于同一个函数。2、 如何求一个函数的定义域(特别是抽象函数的定义域问题)3、 如何求一个函数的解析式。(常见方法有哪些)4、 如何求函数的值域。(常见题型对应的常见方法)5、 函数单调性的判断,证明和应用(单调性的应用中参数问题)6、 函数的对称性(包括奇偶性)、周期性的应用7、 利用函数的图像求函数中参数的范围等其他关于图像问题知识分类一、函数的概念:函数的定义含有三个要素,即定义域A、值域C和对应法则f.当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个
2、基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.1、试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n1(nN*);(4)f(x)=,g(x)=;(5)f(x)=x22x1,g(t)=t22t1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x的范围)1、求下列函数的定义域:(1) (2)(3) (4) (5) (8)(为常数)2、(1)已知f(x)的定义域为 1,2 ,求f (2x-1)的定义域; (2)已知f (2x-1)的定义域为 1,2 ,求f(x)的
3、定义域;3、若函数的定义域为1,1,求函数的定义域5、 已知函数的定义域为R,求实数k的取值范围。三、函数的解析式求函数解析式常用的几种方法:待定系数法、换元法(代换法)、解方程法、1、换元(或代换)法:1、 已知求.2、 已知(),求()的解析式3、 已知函数,求函数,的解析式。2、 待定系数法1、 已知函数()是一次函数,且满足关系式3(1)(1),求()的解析式2、 已知是二次函数,且,求的解析式。3、解方程法(1)、已知函数满足,求(2)、已知函数为偶函数,为奇函数,且+=求、3、已知函数满足,则= 。4、设是R上的奇函数,且当时, ,则当时=_ _ 在R上的解析式为 5、 设与的定义
4、域是, 是偶函数,是奇函数,且,求与 的解析式四、函数值域的求法1、配方法:对于求二次函数或可转化为形如的函数的值域(最值)一类问题,我们常常可以通过配方法来进行求解.例1:求二次函数()的值域.例2:求函数的值域. 例3:求函数的最大值与最小值。2、换元法:通过引入一个或多个新变量或代数式代替原来的变量或代数式或超越式,通过换元,我们常常可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式等,这样我们就能将比较复杂的函数转化成易于求值域的函数进行求解.例6:(整体换元) 已知,求函数的值域.3、不等式法:例11:求函数()的值域.例14:求函数的值域. 7、数形结合法:例29:
5、求函数的值域.例30:求函数的值域。(答案:题型补充:五、 函数的单调性1函数单调性的定义:2.证明函数单调性的一般方法: 定义法:设;作差(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。用导数证明: 若在某个区间A内有导数,则在A内为增函数;在A内为减函数。3.求单调区间的方法:定义法、导数法、图象法。4.复合函数在公共定义域上的单调性:若f与g的单调性相同,则为增函数;若f与g的单调性相反,则为减函数。注意:先求定义域,单调区间是定义域的子集。5一些有用的结论: 奇函数在其对称区间上的单调性相同; 偶函数在其对称区间上的单调性相反; 在公共定义域内:
6、增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。 函数在上单调递增;在上是单调递减。1、函数在区间为减函数,则实数的取值范围是( )A B C D2、函数与函数在区间1,2上都是减函数,则实数的取值范围是( )A B C D 3已知函数是上的减函数,则实数的取值范围是( )A B C D 6、写出函数的单调区间,并指出在相应区间上函数的单调性9、11、已知函数有如下性质:如果常数0,那么该函数在0,上是减函数,在,上是增函数(1)如果函数(0)的值域为6,求的值;(2)求函数(0)在区间上的最小值;(3)研究函数(常数0)在定义域内的单调性,并说明理由;
7、(4)对函数和(常数0)作出推广,使它们都是你所推广的函数的特例研究推广后的函数的单调性(只须写出结论,不必证明)12、已知,且。(1)设g(x)=ff(x),求g(x)的解析式;(2)设,试问是否存在实数,使在(-,-1)递减,且在(-1,0)上递增?六、对称性和周期性函数的对称性(1).函数关于直线x=a成轴对称的充要条件是:(与函数的周期性区分开). (2).函数关于点(a,b)对称的充要条件是:或(3).与函数关于直线对称的函数解析式为:.(4). 与函数关于点(a,b)对称的函数解析式为:.函数周期性1周期函数的定义:对于函数,若存在一个不为零的常数T,使得的每一个 值都有成立,则称
8、为周期函数,常数T叫做的最小正周期.若所有的周期中存在一个最小的周期,则这个最小的正数称为这个函数的最小正周期.2根据函数的对称性判断函数的周期 1.若,则函数是周期函数,b-a是它的一个周期。2若,则函数是周期函数,2a是它的一个周期。一、对称性练习1已知是奇函数,当时,,求的解析式.2已知是偶函数,当时,,求的解析式.3已知函数的图象与函数的图象关于原点成中心对称, 求的解析式。4设函数y=f(x)的图象关于直线x=1对称,若当x1时,y=x21,求当x1时, ,f(x)的解析式. 5设 , 求 关于直线对称的曲线的解析式. 6已知函数是偶函数,且x(0,+)时有f(x)=, 求当x(,2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年级 一轮 复习 函数 专题 基本 性质
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。