初中数学专题特训第十讲:一元一次不等式(组)(含详细参考答案).doc
《初中数学专题特训第十讲:一元一次不等式(组)(含详细参考答案).doc》由会员分享,可在线阅读,更多相关《初中数学专题特训第十讲:一元一次不等式(组)(含详细参考答案).doc(32页珍藏版)》请在咨信网上搜索。
2013年中考数学专题复习第十讲:一元一次不等式(组) 【基础知识回顾】 一、 不等式的基本概念: 1、不等式:用 连接起来的式子叫做不等式 2、不等式的解:使不等式成立的 值,叫做不等式的解 3、不等式的解集:一个含有未知数的不等的解的 叫做不等式的解集 【赵老师提醒:1、常用的不等号有 等 2、不等式的解与解集是不同的两个概念,不等式的解事单独的未知数的值,而解集是一个包围的未知数的值组成的机合,一般由无数个解组成 3、不等式的解集一般可以在数轴上表示出来。注意“>”“<”在数轴上表示为 ,而“≥”“≤”在数轴上表示为 】 二、不等式的基本性质: 基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a<b,则a+c b+c(或a-c b-c) 基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a<b,c>0则a c b c(或—) 基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a<b ,c <0则a c b c(或—) 【赵老师提醒:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要 】 三、一元一次不等式及其解法: 1、定义:只含有一个未知数,并且未知数的次数是 且系数 的不等式叫一元一次不等式,其一般形式为 或 2、一元一次不 等 式 的 解 法 步 骤 和 一 元一次方程的解法相同,即包含 等五个步骤 【赵老师提醒:在最后一步系数化为1时,切记不等号的方向是否要改变 】 一、 一元一次不等式组及其解法: 1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组 2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集 3、解法步骤:先求出不等式组中多个不等式的 再求出他们的 部分,就得到不等式组的解集 4、一元一次不等式组解集的四种情况(a<b) 解集 口诀:大大取小 x>a x>b 1 解集 口诀: X<b X<a 解集 口诀: X>b X<a 解集 口诀: X>a X>b 【赵老师提醒:1、求不等式的解集,一般要体现在数轴上,这样不 2、一元一次不等式组求解过程中往常出现求特殊解的问题,比如:整数解、非负数解等,这时要注意不要漏了解,特别当出现“≥”或“≤”时要注意两头的数值是否在取值的范围内】 五、一元一次不等式(组)的应用: 基本步骤同一元一次方程的应用可分为: 、 、 、 、 、 、 等七个步骤 【赵老师提醒:列不等式(组)解应用题,涉及的题型常与方案设计型问题相联系如:最大利润,最优方案等】 【重点考点例析】 考点一:不等式的基本性质 例1 (2012•绵阳)已知a>b,c≠0,则下列关系一定成立的是( ) A. ac>bc B. C. c﹣a>c﹣b D. c+a>c+b 考点: 不等式的性质。810360 分析: 根据不等式的基本性质进行判断即可. 解答: 解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误; B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误; C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b.故本选项错误; D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确; 故选D. 点评: 主要考查了不等式的基本性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 对应训练 1.(2012•怀化)已知a<b,下列式子不成立的是( ) A. a+1<b+1 B. 3a<3b C.﹣a>﹣b D.如果c<0,那么< 考点: 不等式的性质。810360 分析: 利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变. 解答: 解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意; B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意; C、不等式两边同时乘以﹣,不等号方向改变,故本选项正确,不符合题意; D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意. 故选D. 点评: 本题考查了不等式的性质,解题的关键是牢记不等式的性质,特别是在不等式的两边同时乘以或除以一个负数时,不等号方向改变. 考点二:不等式(组)的解法 例2 (2012•衢州)不等式2x﹣1>x的解是 . 考点: 解一元一次不等式。810360 专题: 计算题。 分析: 先去分母,再移项、合并同类项、化系数为1即可. 解答: 解:去分母得,4x﹣2>x, 移项得,4x﹣x>2, 合并同类项得,3x>2, 系数化为1得,x>. 故答案为:x>. 点评: 本题考查的是解一元一次不等式,熟知解一元一次不等式的步骤是解答此题的关键. 例3 (2012•长沙)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( ) A. B. C. D. 考点: 不等式的解集。810360 专题: 计算题。 分析: 由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,从而得出正确选项. 解答: 解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1; 从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:. 故选:C. 点评: 考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线. 对应训练 2.(2012•白银)不等式2﹣2x<x﹣4的解集是 x>2 . 考点: 解一元一次不等式。810360 专题: 计算题。 分析: 将不等式的未知项移到不等式左边,常数项移动不等式右边,左右合并后,在不等式左右两边同时除以﹣3,不等号方向改变,即可求出原不等式的解集. 解答: 解:2﹣2x<x﹣4, 移项得:﹣2x﹣x<﹣4﹣2, 合并得:﹣3x<﹣6, 将x系数化为1得:x>2, 则原不等式的解集为x>2. 故答案为:x>2 点评: 此题考查了一元一次不等式的解法,解法步骤为:去分母,去括号,移项,合并同类项,将未知数系数化为1,求出解集. 3.(2012•咸宁)不等式组的解集在数轴上表示为( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组。810360 分析: 分别求出各不等式的解集,并求出其公共解集,在数轴上表示出来即可. 解答: 解:, 由①得,x>1; 由②得,x<2, 故此不等式组的解集为:1<x≤2. 在数轴上表示为: 故选C. 点评: 本题考查的是在数轴上表示不等式的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键. 考点三:不等式(组)的特殊解 例3 (2012•毕节地区)不等式组的整数解是 . 考点: 一元一次不等式组的整数解。810360 分析: 首先解不等式组求得不等式的解集,然后确定解集中的整数解即可. 解答: 解:, 解①得:x≤1, 解②得:x>﹣ 则不等式组的解集是:﹣<x≤1, 则整数解是:﹣1,0,1. 故答案是:﹣1,0,1. 点评: 本题考查了不等式组的整数解,正确解不等式组是解题的关键. 对应训练 4.(2012•大庆)不等式组的整数解是 . 考点: 一元一次不等式组的整数解。810360 分析: 首先解不等式组求得不等式组的解集,然后确定解集中的整数即可. 解答: 解:, 解①得:x>2, 解②得:x≤3, 则不等式组的解集是:2<x≤3. 则不等式组的整数解是:3. 故答案是:3. 点评: 考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 考点四:确定不等式(组)中字母的取值范围 例5 (2012•黄石)若关于x的不等式组有实数解,则a的取值范围是 . 考点: 解一元一次不等式组。810360 专题: 计算题。 分析: 分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a的不等式,求出a的取值范围即可. 解答: 解:,由①得,x<3,由②得,x>, ∵此不等式组有实数解, ∴<3, 解得a<4. 故答案为:a<4. 点评: 本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a的不等式是解答此题的关键. 对应训练 5.(2012•鄂州)若关于x的不等式的解集为x<2,则a的取值范围是 . 考点: 解一元一次不等式组。810360 分析: 根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律得出﹣a≥2,求出即可. 解答: 解:, 解不等式①得:x<2, 解不等式②得:x<﹣a, ∵不等式组的解集是x<2, ∴﹣a≥2, ∴a≤﹣2, 故答案为:a≤﹣2 点评: 本题考查了不等式的性质、解一元一次不等式(组)的应用,关键是能根据不等式的解集得出关于a的不等式,题目比较好,难度不大. 考点五:不等式(组)的应用 例5 (2012•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个. 求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数) (2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同? 考点: 一元一次不等式组的应用;一元一次方程的应用。810360 专题: 应用题。 分析: (1)设弟弟每天编x个中国结,根据弟弟单独工作一周(7天)不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7(x+2)>28,列不等式组进行求解; (2)设哥哥工作m天,两人所编中国结数量相同,结合(1)中求得的结果,列方程求解. 解答: 解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结. 依题意得:, 解得:2<x<4. ∵x取正整数, ∴x=3; (2)设哥哥工作m天,两人所编中国结数量相同, 依题意得:3(m+2)=5m, 解得:m=3. 答:弟弟每天编3个中国结;若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同. 点评: 本题考查一元一次不等式组和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系. 对应训练 5.(2012•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元. (1)求购进A、B两种纪念品每件各需多少元? (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 考点: 一元一次不等式组的应用;二元一次方程组的应用。810360 分析: (1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B种纪念品6件需要钱数=800; (2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可; (3)计算出各种方案的利润,比较即可. 解答: 解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元, 根据题意得方程组得:, 解方程组得:, ∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元; (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个, ∴, 解得:50≤x≤53, ∵x 为正整数, ∴共有4种进货方案; (3)因为B种纪念品利润较高,故B种数量越多总利润越高, 因此选择购A种50件,B种50件. 总利润=50×20+50×30=2500(元) ∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元. 点评: 此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解. 【聚焦山东中考】 1.(2012•临沂)不等式组的解集在数轴上表示正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组。810360 分析: 首先求不等式组中每个不等式的解集,再利用解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,找到不等式组的公共解集,再用数轴表示公共部分. 解答: 解:, 由①得:x<3, 由②得:x≥﹣1, ∴不等式组的解集为:﹣1≤x<3, 在数轴上表示为: . 故选:A. 点评: 此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 2.(2012•泰安)将不等式组的解集在数轴上表示出来,正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组。810360 专题: 探究型。 分析: 分别求出各不等式的解集,在数轴上表示出来,其公共部分即为不等式组的解集. 解答: 解:,由①得,x>3;由②得,x≤4, 故其解集为:3<x≤4. 在数轴上表示为: 故选C. 点评: 本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时要注意实心圆点与空心圆点的区别. 3.(2012•烟台)不等式组的解集在数轴上表示正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组。810360 专题: 计算题。 分析: 先解不等式组得到﹣1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案. 解答: 解: 解不等式①得,x≤2, 解不等式②得x>﹣1, 所以不等式组的解集为﹣1<x≤2. 故选A. 点评: 本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组. 4.(2012•潍坊)不等式组的解等于( ) A. 1<x<2 B. x>1 C. x<2 D. x<1或x>2 考点: 解一元一次不等式组。810360 专题: 探究型。 分析: 分别求出各不等式的解集,再求出其公共解集即可. 解答: 解:,由①得,x>1;由②得,x<2, 故此不等式组的解集为:1<x<2. 故选A. 点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 5.(2012•滨州)不等式的解集是( ) A. x≥3 B. x≥2 C. 2≤x≤3 D. 空集 考点: 解一元一次不等式组。810360 分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集. 解答: 解:, 解①得:x≥2, 解②得:x≥3. 则不等式组的解集是:x≥3. 故选A. 点评: 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间. 6.(2012•日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) A.29人 B. 30人 C. 31人 D. 32人 考点: 一元一次不等式组的应用。810360 分析: 首先设这个敬老院的老人有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组,解出不等式组后再找出符合条件的整数. 解答: 解:设这个敬老院的老人有x人,依题意得: , 解得:29<x≤32, ∵x为整数, ∴x最少为30, 故选:B. 点评: 此题主要考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式组. 7.(2012•菏泽)若不等式组的解集是x>3,则m的取值范围是 . 考点: 不等式的解集。810360 专题: 探究型。 分析: 根据“同大取较大”的法则进行解答即可. 解答: 解:∵不等式组的解集是x>3, ∴m≤3. 故答案为:m≤3. 点评: 本题考查的是不等式的解集,熟知“同大取较大”的法则是解答此题的关键. 8.(2012•济南)不等式组的解集为 . 考点: 解一元一次不等式组。810360 分析: 分别求出各不等式的解集,再求出其公共解集即可. 解答: 解:,由①得,x<2;由②得,x≥﹣1, 故此不等式组的解集为:﹣1≤x<2. 故答案为:﹣1≤x<2. 点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.(2012•威海)解不等式组,并把解集表示在数轴上:. 考点: 解一元一次不等式组;在数轴上表示不等式的解集。810360 专题: 探究型。 分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 解答: 解:解不等式①,得x≤﹣2, 解不等式②,得x>﹣3, 故原不等式组的解集为﹣3<x≤﹣2, 在数轴上表示为(如图) 点评: 本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键. 10.(2012•日照)解不等式组:,并把解集在数轴上表示出来. 考点: 解一元一次不等式组;在数轴上表示不等式的解集。810360 专题: 计算题。 分析: 将不等式组的两不等式分别记作①和②,由不等式①移项,将x的系数化为1,求出x的范围,由不等式②左边去括号后,移项并将x的系数化为1求出解集,找出两解集的公共部分,确定出原不等式组的解集,并将此解集表示在数轴上即可. 解答: 解:, 由不等式①移项得:4x+x>1﹣6, 整理得:5x>﹣5, 解得:x>﹣1,…(1分) 由不等式②去括号得:3x﹣3≤x+5, 移项得:3x﹣x≤5+3, 合并得:2x≤8, 解得:x≤4,…(2分) 则不等式组的解集为﹣1<x≤4.…(4分) 在数轴上表示不等式组的解集如图所示,…(6分) 点评: 此题考查了一元一出不等式组的解法,以及在数轴上表示不等式的解集,分别求出不等式组中两不等式的解集,然后利用取解集的方法(同大取大,同小取小,大小小大取中间,大大小小无解)来找出不等式组的解集. 11.(2012•聊城)解不等式组. 考点: 解一元一次不等式组。810360 专题: 探究型。 分析: 分别求出各不等式的解集,再求出其公共解集即可. 解答: 解: 解不等式①,得x<3, 解不等式②,得x≥﹣1. 所以原不等式的解集为﹣1≤x<3. 点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 12.(2012•济宁)解不等式组,并在数轴上表示出它的解集. 考点: 解一元一次不等式组;在数轴上表示不等式的解集。810360 专题: 计算题。 分析: 利用去分母及去括号法则化简原不等式组的两不等式,分别求出解集,将两解集表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集. 解答: 解:, 由不等式①去分母得:x+5>2x,解得:x<5; 由不等式②去括号得:x﹣3x+3≤5,解得:x≥﹣1, 把不等式①、②的解集表示在数轴上为: 则原不等式的解集为﹣1≤x<5. 点评: 此题考查了一元一次不等式组的解法,以及在数轴上表示不等式的解集,其中不等式组取解集的方法为:同大取大;同小取小;大小小大取中间;大大小小无解. 13.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元. (1)在李明2012年1月份存款前,储蓄盒内已有存款多少元? (2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值. 考点: 一元一次不等式的应用;二元一次方程组的应用。810360 分析: (1)设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案; (2)首先计算出2012年共有的存款数,再由题意可得从2013年1月份开始,每月存款为(15+t)元;从2013年1月到2015年6月共有30个月,共存款30(15+t),再加上2012年共有的存款数存款总数超过1000元,由此可得不等式230+30(15+t)>1000,解出不等式,取符合条件的最小的整数值即可. 解答: 解:(1)设李明每月存款x元,储蓄盒内原有存款y元,依题意得, , 解得, 答:储蓄盒内原有存款50元; (2)由(1)得,李明2012年共有存款12×15+50=230元, 2013年1月份后每月存入(15+t)元, 2013年1月到2015年6月共有30个月, 依題意得,230+30(15+t)>1000, 解得t>10, 所以t的最小值为11. 答:t的最小值为11. 点评: 此题主要考查了二元一次方程组以及一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,再设出未知数列出方程组与不等式组. 【备考真题过关】 一、选择题 1.(2012•凉山州)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( ) A. c<b<a B. b<c<a C. c<a<b D. b<a<c 考点: 不等式的性质;等式的性质。810360 专题: 应用题。 分析: 观察图形可知:b=2c;a>b. 解答: 解:依题意得 b=2c;a>b. 所以 a>b>c. 故选A. 点评: 此题考查不等式的性质,渗透了数形结合的思想,属基础题. 2.(2012•广州)已知a>b,若c是任意实数,则下列不等式中总是成立的是( ) A. a+c<b+c B. a﹣c>b﹣c C. ac<bc D. ac>bc 考点: 不等式的性质。810360 分析: 根据不等式的性质,分别将个选项分析求解即可求得答案;注意排除法在解选择题中的应用. 解答: 解:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误; B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确; C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误; D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误. 故选B. 点评: 此题考查了不等式的性质.此题比较简单,注意解此题的关键是掌握不等式的性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 3.(2012•常州)已知a、b、c、d都是正实数,且<,给出下列四个不等式: ①<;②<;③;④< 其中不等式正确的是( ) A.①③ B. ①④ C. ②④ D. ②③ 考点: 不等式的性质。810360 专题: 计算题。 分析: 由<,a、b、c、d都是正实数,根据不等式不等式的性质不等式都乘以bd得到ad<bc,然后两边都加上ac得到ac+ad<ac+bc,即a(c+d)<c(a+b),然后两边都除以(c+d)(a+b)得到<,得到①正确,②不正确;同理可得到<,则③正确,④不正确. 解答: 解:∵<,a、b、c、d都是正实数, ∴ad<bc, ∴ac+ad<ac+bc,即a(c+d)<c(a+b), ∴<,所以①正确,②不正确; ∵<,a、b、c、d都是正实数, ∴ad<bc, ∴bd+ad<bd+bc,即d(a+b)<b(d+c), ∴<,所以③正确,④不正确. 故选A. 点评: 本题考查了不等式的性质:不等式两边都加上或减去同一个数,不等号的方向不改变;等式两边都乘以或除以同一个正数,不等号的方向不改变;等式两边都乘以或除以同一个负数,不等号的方向改变. 4.(2012•攀枝花)下列说法中,错误的是( ) A.不等式x<2的正整数解中有一个 B. ﹣2是不等式2x﹣1<0的一个解 C.不等式﹣3x>9的解集是x>﹣3 D. 不等式x<10的整数解有无数个 考点: 不等式的解集。810360 分析: 解不等式求得B,C即可选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案. 解答: 解:A、不等式x<2的正整数只有1,故本选项正确,不符合题意; B、2x﹣1<0的解集为x<,所以﹣2是不等式2x﹣1<0的一个解,故本选项正确,不符合题意; C、不等式﹣3x>9的解集是x<﹣3,故本选项错误,符合题意; D、不等式x<10的整数解有无数个,故本选项正确,不符合题意. 故选C. 点评: 此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变. 5.(2012•河北)下列各数中,为不等式组解的是( ) A. ﹣1 B. 0 C. 2 D. 4 考点: 不等式的解集;解一元一次不等式组。810360 专题: 计算题。 分析: 分别求出两个不等式的解集,再找到其公共部分即可. 解答: 解:, 由①得,x>, 由②得,x<4, ∴不等式组的解集为<x<4. 四个选项中在<x<4中的只有2. 故选C. 点评: 本题考查了不等式组的解集和解一元一次不等式,能找到各不等式的解集的公共部分是解题的关键. 6.(2012•遵义)如图,数轴上表示某不等式组的解集,则这个不等式组可能是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集。810360 分析: 首先由数轴上表示的不等式组的解集为:﹣1≤x≤2,然后解各不等式组,即可求得答案,注意排除法在解选择题中的应用. 解答: 解:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2, A、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确; B、解得:此不等式组的解集为:x≤﹣1,故本选项错误; C、解得:此不等式组的无解,故本选项错误; D、解得:此不等式组的解集为:x≥2,故本选项错误. 故选A. 点评: 此题考查了在数轴上表示不等式解集的知识.此题比较简单,注意掌握不等式组的解法是解此题的关键. 7.(2012•西宁)函数y=的自变量x的取值范围在数轴上可表示为( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;函数自变量的取值范围。810360 专题: 探究型。 分析: 先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围并在数轴上表示出来即可. 解答: 解:∵y=, ∴x﹣2≥0,解得x≥2, 在数轴上表示为: 故选D. 点评: 本题考查的是在数轴上表示不等式的解集,熟知二次根式有意义的条件是解答此题的关键. 8.(2012•武汉)在数轴上表示不等式x﹣1<0的解集,正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式。810360 分析: 求出不等式的解集,在数轴上表示出不等式的解集,即可选出答案. 解答: 解:x﹣1<0, ∴x<1, 在数轴上表示不等式的解集为:, 故选B. 点评: 本题考查了解一元一次不等式和在数轴上表示不等式的解集的应用,注意:在数轴上,右边表示的数总比左边表示的数大,不包括该点时,用“圆圈”,包括时用“黑点”. 9.(2012•天门)不等式组的解集在数轴上表示正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组。810360 分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可. 解答: 解:, 由①得x≥﹣1; 由②得x<2; ∴不等式组的解集为﹣1≤x<2; 在数轴上表示为: 故选C. 点评: 本题考查了不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线. 10.(2012•云南)不等式组的解集是( ) A. x<1 B. x>﹣4 C. ﹣4<x<1 D. x>1 考点: 解一元一次不等式组。810360 分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集. 解答: 解:, 由①得﹣x>﹣1,即x<1; 由②得x>﹣4; 由以上可得﹣4<x<1. 故选C. 点评: 主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 11.(2012•义乌市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是( ) A.﹣4和0 B. ﹣4和﹣1 C. 0和3 D. ﹣1和0 考点: 解一元一次不等式组;不等式的解集。810360 专题: 探究型。 分析: 先求出不等式组的解集,再在其取值范围内找出符合条件的x的值即可. 解答: 解:, 由②得,x>﹣2, 故此不等式组的解集为:﹣2<x<2, x=﹣4,﹣1,0,3中只有﹣1、0满足题意. 故选D. 点评: 本题考查的是解一元一次不等式组,根据题意求出不等式组的解集是解答此题的关键. 12.(2012•丹东)不等式组的解集是( ) A.﹣3<x<4 B. 3<x≤4 C. ﹣3<x≤4 D. x<4 考点: 解一元一次不等式组。810360 专题: 探究型。 分析: 分别求出各不等式的解集,再求出其公共解集即可. 解答: 解:, 由①得,x>﹣3; 由②得,x<4, 故此不等式组的解集为:﹣3<x<4. 故选A. 点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 二、填空题 13.(2012•柳州)如图,x和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空: . 考点: 不等式的性质。810360 分析: 托盘天平是支点在中间的等臂杠杆,天平平衡时砝码的质量等于被测物体的质量,根据图示知被测物体x的质量小于砝码的质量. 解答: 解:根据图示知被测物体x的质量小于砝码的质量,即x<5; 故答案是:<. 点评: 本题考查了不等式的相关知识,利用“天平”的不平衡来得出不等关系,体现了“数形结合”的数学思想. 14.(2012•南充)不等式x+2>6的解集为 x>4 . 考点: 解一元一次不等式。810360 专题: 计算题。 分析: 根据一元一次不等式的解法,移项、合并同类项即可. 解答: 解:移项得,x>6﹣2, 合并同类项得,x>4. 故答案为:x>4. 点评: 本题考查了解一元一次不等式,比较简单,注意移项要变号. 2.(2012•珠海)不等式组的解集是 ﹣1<x≤2 . 考点: 解一元一次不等式组。810360 专题: 计算题。 分析: 先求出两个不等式的解集,再求其公共解. 解答: 解:, 解不等式①得,x>﹣1, 解不等式②得,x≤2, 所以不等式组的解集是﹣1<x≤2. 故答案为:﹣1<x≤2. 点评: 本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 15.(2012•黑龙江)若不等式组的解集是x>1,则a的取值范围是 a≤1 . 考点: 解一元一次不等式组。8103- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 专题 第十 一元 一次 不等式 详细 参考答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文