快速付里叶变换.pptx
《快速付里叶变换.pptx》由会员分享,可在线阅读,更多相关《快速付里叶变换.pptx(80页珍藏版)》请在咨信网上搜索。
1、第四节基-2按频率抽取的FFT算法Decimation-in-Frequency(DIF)(Sander-Tukey)一、算法原理设输入序列长度为N=2M(M为正整数,将该序列的频域的输出序列X(k)(也是M点序列,按其频域顺序的奇偶分解为越来越短的子序列,称为基2按频率抽取的FFT算法。也称为Sander-Tukey算法。二、算法步骤1.分组分组DFT变换:已证明频域上X(k)按k的奇偶分为两组,在时域上x(n)按n的顺序分前后两部分,现将输入x(n)按n的顺序分前后两部分:前半子序列x(n),0nN/2-1;后半子序列x(n+N/2),0nN/2-1;例:N=8时,前半序列为:x(0),x
2、(1),x(2),x(3);后半序列为:x(4),x(5),x(6),x(7);则由定义输出(求DFT)2.代入DFT中3.变量置换变量置换-13.变量置换变量置换-23.变量置换变量置换-33.变量置换变量置换-44.结论1一个N点的DFT被分解为两个N/2点DFT。X1(k),X2(k)这两个N/2点的DFT按照:可见:如此分解,直至分到2点的DFT为止。4.结论2三、蝶形流图表示蝶形单元:时域时域中,前后半部表示式用蝶形结表示。x(n)x(n+N/2)与时间抽取法的推演过程一样,由于N=2L,N/2仍为偶数,所以可以将N/2点DFT的输出X(k)再分为偶数组和奇数组,这样就将一个N/2点
3、的DFT分成两个N/4点DFT的输入,也是将N/2点的DFT的输入上、下对半分后通过蝶形运算而形成,直至最后为2点DFT。例子:求 N=23=8点DIF(1)先按)先按N=8-N/2=4,做做4点的点的DIF:先将N=8DFT分解成2个4点DFT:可知:时域上:x(0),x(1),x(2),x(3)为偶子序列 x(4),x(5),x(6),x(7)为奇子序列 频域上:X(0),X(2),X(4),X(6)由x1(n)给出 X(1),X(3),X(5),X(7),由x2(n)给出将N=8点分解成2个4点的DIF的信号流图 4点DFTx(0)x(1)x(2)x(3)4点DFTx(4)x(5)x(6
4、)x(7)X(0)X(2)X(4)X(6)X(1)X(3)X(5)X(7)X1(k)前半部分序列后半部分序列x1(n)x2(n)X2(k)(2)N/2(4点)-N/4(2点)FFT(a)先将先将4点分解成点分解成2点的点的DIF:因为4点DIF还是比较麻烦,所以再继续分解。(b)一个2点的DIF蝶形流图2点DFT2点DFTx1(0)x1(1)x1(2)x1(3)x3(0)x3(1)x4(0)x4(1)X(0)X(4)X(2)X(6)(c)另一个2点的DIF蝶形流图2点DFT2点DFTx2(0)x2(1)x2(2)x2(3)x5(0)x5(1)x6(0)x6(1)X(1)X(5)X(3)X(7)
5、(3)将N/4(2点)DFT再分解成2个1点的DFT(a)求2个一点的DFT 最后剩下两点DFT,它可分解成两个一点DFT,但一点DFT就等于输入信号本身,所以两点DFT可用一个蝶形结表示。取x3(0)、x3(1)为例。(b)2个1点的DFT蝶形流图 1点DFTx3(0)1点DFTx3(1)X(0)X(4)进一步简化为蝶形流图:X(0)X(4)x3(0)x3(1)(4)一个完整N=8的按频率抽取FFT的运算流图 x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)X(0)X(4)X(2)X(6)X(1)X(5)X(3)X(7)m=0m=1m=2(5)DIF的特点(a)输入自然顺序,
6、输出乱序且满足码位输入自然顺序,输出乱序且满足码位倒置规则。倒置规则。(b)根据时域、频域互换,可知:根据时域、频域互换,可知:输入乱序,输出自然顺序。输入乱序,输出自然顺序。(6)DIF与DIT比较1相同之处:(1)DIF与DIT两种算法均为原位运算。(2)DIF与DIT运算量相同。它们都需要(6)DIF与DIT比较2不同之处:(1)DIF与DIT两种算法结构倒过来。DIF为输入顺序,输出乱序。运算完毕再运行“二进制倒读”程序。DIT为输入乱序,输出顺序。先运行“二进制倒读”程序,再进行求DFT。(2)DIF与DIT根本区别:在于蝶形结不同。DIT的复数相乘出现在减法之前。DIF的复数相乘出
7、现在减法之后。作业试画出N=16点的基-2按频率抽取的FFT流图(DIF)。第五节IFFT运算方法以上所讨论的FFT的运算方法同样可用于IDFT的运算,简称为IFFT。即快速付里叶反变换。从IDFT的定义出发,可以导出下列二种利用FFT来计算FFT的方法。一、利用FFT计算IFFT的思路1将下列两式进行比较二、利用FFT计算IFFT的思路2利用FFT计算IFFT时在命名上应注意:(1)把FFT的时间抽取法,用于IDFT运算时,由于输入变量由时间序列x(n)改成频率序列X(k),原来按x(n)的奇、偶次序分组的时间抽取法FFT,现在就变成了按X(k)的奇偶次序抽取了。(2)同样,频率抽取的FFT
8、运算用于IDFT运算时,也应改变为时间抽取的IFFT。三、改变FFT流图系数的方法1.思路在IFFT的运算中,常常把1/N分解为(1/2)m,并且在M级运算中每一级运算都分别乘以1/2因子,就可得到IFFT的两种基本蝶形运算结构。(并不常用此方法)2.IFFT的基本蝶形运算ABAB(a)频率抽取IFFT的蝶形运算(b)时间抽取IFFT的蝶形运算四.直接利用FFT流图的方法1.思路前面的两种IFFT算法,排程序很方便,但要改变FFT的程序和参数才能实现。现介绍第三种IFFT算法,则可以完全不必改动FFT程序。2.直接利用FFT流图方法的推导可知:只须将频域成份一个求共轭变换,即(1)将X(k)的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 快速 付里叶 变换
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。