让我再看你一眼(高中数学知识点回顾).doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 再看 一眼 高中数学 知识点 回顾
- 资源描述:
-
让我 再看你一眼 高中数学知识点回顾 姓名: 答 题 技 巧 一、 技术矫正: 考试中时间分配及处理技巧非常重要,有几点需要必须提醒同学们注意: ⑴、按序答题,先易后难:一定要选择熟题先做、有把握的题目先做; ⑵、不能纠缠在某一题、某一细节上,该跳过去就先跳过去,千万不能感觉自己被卡住,这样会心慌,影响下面做题的情绪; ⑶、避免“回头想”现象。一定要争取一步到位,不要先做一下,等回过头来再想再检查,高考时间较紧张,也许待会儿根本顾不上再来思考; ⑷、做某一选择题时如果没有十足的把握,初步答案或猜估的答案必须先在卷子上做好标记,有时间再推敲,不要空答案,否则要是时间来不及瞎写答案只能增加错误的概率。 二、 规范化提醒: 这是取得高分的基本保证,规范化包括:解题过程有必要的文字说明或叙述;注意解完后再看一下题目,看你的解答是否符合题意,谨防因解题不全或失误,答题或书写不规范而失分,总之,要吃透题“情”;合理分配时间,做到一准、二快、三规范,特别是要注意解题结果的规范化。 例如: ⑴、解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示.三角方程的通解中必须加.在写区间或集合时,要正确地书写圆括号、方括号或大括号,区间的两端点之间、集合的元素之间用逗号隔开; ⑵、解题结束后一定要写上符合题意的“答”,如利用法向量求出的空间角的余弦,应用题等都要作答; ⑶、分类讨论题,最后一定要写综合性结论; ⑷、任何结果要最简.如等. ⑸、排列组合题,无特别声明,要求出数值. ⑹、函数解析式后面一般要注明定义域; ⑺、参数方程化普通方程,要考虑消参数过程中最后的限制范围; ⑻、注意轨迹与轨迹方程的区别:轨迹方程一般用普通方程表示,轨迹则需要说明图形形状,且有条件限制的轨迹方程必须注明或的范围. 三、考前寄语: ①、先易后难,先熟后生; ②、一慢一快:审题要慢,做题要快; ③、不能小题难做,小题大做,而要小题小做,小题巧做; ④、我易人易我不大意,我难人难我不畏难; ⑤、考试不怕题不会,就怕会题做不对; ⑥、基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分; ⑦、对数学解题有困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略。 让 我 再 看 你 一 眼 —— 高中数学知识点回顾 一、集合与简易逻辑 1、常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 ;实数集 ;正实数集 。 2、注意区分集合中元素的形式,如: 表示 ; 表示 ; 表示 ; 表示 ; 3、空集是指不含任何元素的集合,空集是任何集合的子集,也是任何非空集合的真子集。 (1)注意、和的区别: 表示 ;表示 ;表示 。 (2)注意:当条件为时在讨论的时候不要遗忘了的情况 如:,如果,则的取值为 . 4、含个元素的集合的子集个数为 ;真子集个数为 。 5、若且,则的 条件是 6、注意命题的否定与它的否命题的区别: 命题的否定是 ,的否命题是 ;命题“或”的否定是 ;“且”的否定是 ;命题“”的否定是 。 二、函数 1、映射:: (1)集合中的元素在中必有象且中不同元素在中可以有 ; (2)集合中的元素在中不一定有 。 (3)若,;问:到的映射有 个,到的映射有 个; 2、复合函数的定义域: (1)若定义域为[-1,2],则f(2x+1)的定义域为 ; (2)若f(x2)定义域为[-1,2],则f(x)的定义域为 ; 3、复合函数单调性由“同增异减”判定。 即:对于复合函数,设,若的单调性与的单调性相同时就是的 ;若的单调性与的单调性相异时就是的 。 提醒:(1)求单调区间时要注意定义域;(2)单调性一般用区间表示,不能用集合表示。 如:函数的单调递增区间是. 4、函数的奇偶性 (1)函数有奇偶性的必要条件是其定义域是关于 ; (2)若是偶函数,则 ; 如,偶函数在上是增函数,则不等式的解集为 ; (3)定义域内可取零的奇函数必满足 ; (4) 是偶函数 ; (5)若是偶函数,则的对称轴是 ;若是奇函数,则的对称中心是 。 5、函数图象的几种常见变换 (1)平移变换:左右平移---------“左加右减”(注意是针对而言); 上下平移----“上加下减”(注意是针对而言). (2)翻折变换:; . (3)伸缩变换(): ; (4)对称变换: 函数的图像与的图像关于 对称; 函数的图像与函数的图像关于 对称; 函数的图像与函数的图像关于 对称; 函数的图像与它的反函数的图像关于 对称; 若函数满足,则的图像关于 对称; 对于两个函数,,则它们图像关于直线对称(由 求得) 6、反比例函数: 定义域 值 域 单调性 对称中心 渐近线 7、双钩函数(又叫NiKe函数) 定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。 8、指数函数: 定义域 值 域 函数值 单调性 9、对数函数: 定义域 值 域 函数值 单调性 注意:(1)与的图象关系是 ; (2)对数运算法则: ; ; ; (3) ;换底公式: ;对数恒等式: ; (4)已知函数的定义域为,则的取值范围为 。 (5)已知函数的值域为,则的取值范围为 。 10、恒成立;恒成立 三、导数 1、导数的定义:在点处的导数记作. 2、函数在点处的导数的几何意义:曲线在点处切线的斜率, 即曲线在点处的切线的斜率是,切线方程为. 3、常见函数的导数公式:= (为常数);= ;= ;= ; = ; = ; = ;= 。 4、导数的四则运算法则: ; ; 5、利用导数判断函数的单调性: 设函数在某个区间内可导,如果,那么为 ;如果,那么为 。 6、利用导数求函数极值: 若方程的根,当时且时,那么函数在处取得 值;当时且时,那么函数在处取得最大值;那么函数在这个根处取得 值; 将在内的极值与、比较,其中最大的一个为最大值,最小的一个为最小值。 7、定积分 (1)定积分概念:设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<xi-1<xi<…xn=b把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上取任一点ξi(i=1,2,…n)作和式In=(ξi)△x(其中△x为小区间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[a,b]上的定积分。记作:,即=(ξi)△x。 这里,a与b分别叫做定积分的下限与上限。区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。 (2)定积分的计算: 如果f(x)是区间上的连续函数,并且那么 F(b)-F(a)。这个结论叫做微积分基本定理。又叫莱面尼兹公式。为了方便,我们常常把F(b)-F(a)记成 (3).定积分求曲边梯形面积 由三条直线x=a,x=b(a<b),x轴及一条曲线y=f(x)围成的曲边梯的面积 如果图形由曲线y1=f1(x),y2=f2(x),及直线x=a,x=b(a<b)围成,那么所求图形的面积 (6)定积分的物理应用:. 物体做变速直线运动经过的位移s等于其速度函数v=v(t)在时间区间上的定积分。 如果物体沿与变力F(x)相同的方向移动,那么从位置x=a到x=b变力所做的功 四、不等式 1、均值不等式(又称基本不等式): 若则,在时取等号。 如:①若正数满足,则的最小值 ②已知,则的最大值 。 ③,的最大值 。 2、绝对值的三角不等式: ; 3、 柯西不等式: 设,则 (在时取等号) 4、高次不等式:序轴标根法的步骤: (1)化成标准型, (2)将每个因式的根标在数轴上; (3)从右上方开始画出曲线依次通过每个数轴上的每个根。 五、三角函数: 1、在半径为的圆内弧长为的圆心角的弧度数的绝对值 2、诱导公式可用概括为: , 。 , , ; , , ; , , ; , , ; , , ; , , , ; , , , 。 3、 两角和、差公式 , , ; , , ; 4、二倍角公式 , , = = ; 5、降次公式: ; ; 6、辅助角公式: (其中 ) 7、三角函数的图象和性质: 图 象 定义域 值域 周期 奇偶性 对称性 对称轴 中心 单调性 增区间 减区间 最值(指出此时的值) 最大值 最小值 8、正弦型函数 (1)先平移后伸缩: ( ) ( ) ( ) ( ) ( ) ( ) (2)先伸缩后平移: ( ) ( ) ( ) ( ) ( ) ( ) 9、解斜三角形: (1)正弦定理: = = =(为 ) (2)余弦定理: ; ; ; (3)面积公式: = 其中,、分别为的外接圆和内切圆的半径。 10、常用的利用三角换元 如:在圆中,可设;在椭圆中,可设。 六、数列 1、和之间的关系:(如若在时也适合,则统一成一种形式) 2、等差数列、等比数列的性质: 等差数列 等比数列 求和公式 = ①时 ②时 性质 若, 则 ; 当,则 ; 若,则__________ __; 特别当,则 ; 3、根据数列递推公式求通项 (1)累加法:已知中,,则= (2)累乘法:已知中,,则= (3)(为常数)型:构造法:设,得到, 则 为等比数列。如:已知,则= (4)(为常数)型:两边同时除去得,令,转化为,再用(3)法解决。 4、常用结论 (1): 1+2+3+...+n = (2) 1+3+5+...+(2n-1) = (3) (4) (5) 裂项相消法: ; 5、数学归纳法步骤: (1)验证当时结论成立 (2)假设当n=k时结论成立,运用n=k时的结论证明当n=k+1时结论也成立; 综合(1)(2),得出原命题的结论对给定的所有正整数都成立 七、平面向量 1、设,. (1) ;(2) ;(3) . (4) = ;(5) 2、向量在方向上的投影为 。 3、 设,,则 (1)= (2)若为线段的中点,则 (3)若为直线上的一点,且,则 (4),,三点共线存在实数、使得,其中 . 4、三角形中向量性质: (1)已知、、,则重心( , , ) (2)为 ; (3)为 ; (4)为 ; 八、直线和圆的方程 1、直线的倾斜角的范围是 ; 2、点到直线的距离公式 ; 3、两条平行线与的距离是 . 4、圆的方程 (1)以点为圆心,为半径的标准方程 . (2)圆的一般方程中圆心为 ,半径为 (3)以、为直径的圆的方程 ; 5、圆的切线方程: (1)过圆上的点的切线方程为 ; (2)过圆上的点的切线方程为 ; 6、圆的弦的直线方程: (1) 过圆外一点作圆的两切线,为切点,则直线的方程为: (2) 过圆外一点作圆的两切线,为切点,则直线的方 程为: (3)相交两圆和的公共弦的直线方程: 九、圆锥曲线方程 1、椭圆焦半径公式:设为椭圆上任一点,焦点为,, 则(“左加右减”); 2、抛物线焦半径公式: 设为抛物线上任意一点,为焦点,则 ; 若为上任意一点,为焦点,则 . 3、共渐近线的双曲线标准方程为(为参数,). 4、直线与圆锥曲线相交的弦长公式 = 5、抛物线的焦点弦(过焦点的弦)为,、,则有如下结论: (1); (2),; (3) . 6、对于抛物线上的点的坐标可设为,以简化计算. 7、圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆中, 以为中点的弦所在直线斜率;在双曲线中,以为中点的弦所在直线斜率;在抛物线中,以为中点的弦所在直线的斜率. 8、过椭圆上的点的切线方程为 9、过椭圆外一点作两切线,为切点,则直线的方 程为:方程为 十、直线、平面、简单几何体 1、线线平行的判断: (1)平行于同一 的两直线平行。 (2)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和 平行。 (3)如果两个平行平面同时和第三个平面相交,那么它们的 平行。 (4) 于同一平面的两直线平行。 2、线线垂直的判断: 若一直线 于一平面,这条直线垂直于平面内所有直线。 3、线面平行的判断: (1)如果平面外的一条直线和 的一条直线平行,那么这条直线和这个平面平行。 (2)两个平面平行, 的直线必平行于另一个平面。 4、线面垂直的判断: (1)如果一直线和平面内的两 垂直,这条直线就垂直于这个平面。 (2)一直线垂直于两个平行平面中的一个平面,它也垂直于 。 (3)如果两个平面垂直,那么在—个平面内垂直于 的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的 直线分别平行于另一个平面,这两个平面平行。 (2) 同一条直线的两个平面平行。 6、面面垂直的判断: 一个平面经过另一个平面的 ,这两个平面互相垂直。 7、空间角的求法: (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。 异面直线所成角的范围: ; 设、分别为异面直线、的方向向量,则两异面直线所成的角的余弦为 . (2)线面所成的角:即斜线与它在平面内的射影所成的角。 斜线与平面所成角的范围: ; 设是斜线的方向向量,是平面的法向量,则斜线与平面所成的角的正弦的绝对值为 . (3)二面角: 二面角大小的范围: ; 设,是二面角的两个半平面的法向量,则二面角的平面角的余弦的绝对值为 射影法:若棱锥的某侧面与底面所成的角为, 则 8、点到平面的距离: 设是平面的法向量,在内取一点,则到的距离 9、多面体: (1)棱柱: ①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱侧棱不垂直于底面 斜棱柱侧棱垂直于底面 直棱柱底面是正多边形 正棱柱; 四棱柱底面是平行四边形 平行六面体侧棱垂直于底面 直平行六面体底面是矩形 长方体底面是正方形 正四棱柱棱长都相等 正方体。 ②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 ③体积:(为底面积,为高,为已知侧面与它对棱的距离) (2)棱锥: ①定义:有一个面是多边形其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做 棱锥; 正棱锥:底面是正多边形,各侧棱长都相等的棱锥叫做正棱锥; 侧棱长等于底面边长的正三棱锥又叫正四面体。 ②体积:(为底面积,为高) (3)圆台、棱台体积: 10、球 (1)性质: ①任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫小圆) 两点的球面距离,是指经过球面上这两点的大圆在这两点间的一段劣弧的长。 ②球心和截面圆心的连线垂直于截面,并且,其中为球半径,为截面半径,为球心的到截面的距离。 (2)面积公式:(为球半径); (3)体积公式:(为球半径) 十一、算法和复数(略) 十二、排列组合和二项式定理 1、排列数公式: ,当时为全排列. 2、组合数公式:,. 3、排列组合综合问题: 练习1、四个不同的小球全部放入编号为1、2、3、4的四个盒中,恰有两个空盒的放法有 种; 解:分三步:第一步先选两个空盒;第二步把四个球分成两组:2个和2个,或1个和3个;第三步把分成的两组放入余下的两个空盒中。 A B C D 练习2、四个不同的小球全部放入编号为1、2、3、4的四个盒中,甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有 种; 解:甲球有种放法,乙球有种放法,另2个球各有 种放法,共 练习3:用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂 不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法; 4、二项式定理:(a+b) =Ca+ Cab+…+ Cab+…+Cb (n∈N) (1)展开式共有 项,其中C(r=0,1,2…n)叫做 系数,Cab叫做二项式的 ,即展开式的第 项; (2)二项式系数具有下列性质:与首末两端等距离的二项式系数相等,即;展开式正中间的二项式系数最大;;. 特别提醒:二项式的展开式的项的系数与二项式系数是不同的两个概念。如在的展开式中,第r+1项的二项式系数为,第r+1项的系数为; 十三、概率与统计 1、离散型随机变量的分布列: … … … … 2、期望(又称均值). 3、方差. 4、标准差;.. 5、二项分布:在次试验中,每次发生的概率为,满足,则称 随机变量服从二项分布,记作,则, . 6.正态总体的概率密度函数:,式中是参数,分别表示总体的平均 数与标准差; 7、回归方程必过样本点的中心( ,) 8、 2×2列联表的独立性检验: 十四、几何证明选讲 1、圆内接四边形的性质与判定定理 圆内接四边形的对角互补,圆内接四边形的外角等于它的内角的对角。 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。 2、弦切角的性质 弦切角定理:弦切角等于它所平的弧所对的圆周角。 3.与比例线段有关的定理 定理名称 基本图形 条 件 结 论 直角三角形的射影定理 Rt⊿ABC中,CD是斜边AB上的高 CD2=AD·BD, AC2=AD·AB, BC2=BD·AB。 相交弦定理 弦AB、CD相交于圆内点P PA·PB=PC·PD 割线定理 PAB、PCD是⊙的割线 PA·PB=PC·PD 切割线定理 PA切⊙于A,PBC是⊙的割线 (1)PA2=PB·PC (2)⊿PAB∽⊿PCA 十五、坐标系与参数方程 1、极坐标与直角坐标的互化: 互化的前提条件:(1)极点与原点重合;(2)极轴与x轴正方向重合;(3)取相同的单位长度。 设点P的直角坐标为(x,y),它的极坐标为,则 2、常见曲线的参数方程的一般形式: (1)经过点P0(x0,y0),倾斜角为a的直线的参数方程为称为直线的标准参数方程。 (2) (3) 十六、单峰函数和优选法 1、单峰函数 如果函数f(x)在区间[a,b]上只有唯一的最大值点(或最小值点)C,而在最大值点(或最小值点)C的左侧,函数单调增加(减少);在点C的右侧,函数单调减少(增加),则称这个函数为区间[a,b]上的单峰函数。并规定,区间[a,b]上的单调函数也是单峰函数。 2、 黄金分割法——0.618法 =小+0.618×(大-小),=小+大-,一般:=小+大-,口诀为“加两头,减中间”。 用黄金分割法寻找最佳点时,n次试验后的存优范围与原始的因素范围的比值称为精度,n次试验后的精度 3、分数法 斐波那契数列.斐波那契数列:。 黄金分割常数w的近似分数列: 优选法中,像这样用渐进分数近似代替w确定试点的方法叫分数法. 按照分数法安排试验,能通过次试验保证从个试点中找出最佳点。 21 这可让他犯了难,施工现场距离项目部很远,没有车还真是不方便office, branch offices (jurisdiction), risk management, marketing management sector through supervision and inspection found problems, should be assigned the investigators are corrected in a timely manner. 27th the fifth chapter penalty under any of the following acts, then the relevant provisions to punish the investigators, according to the Bank. To constitute a crime shall be investigated for criminal responsibility: (A) on the business that are not involved in the investigation, issued a survey. (B) customer credit information are not thorough verification. (Iii) to participate in credit customer survey is not in place, customers and data is incomplete, untrue; he knows bear a counterfeited clients issuing credit. (D) does not provide for due diligence of credit business, pre-loan investigation form, concealing facts or providing false information or should be found in a normal investigation failed to discover the risk factors, lead to the review and approval policy errors, loan risk. (Five) on loan guarantees of survey not in place, not by provides on arrived, and pledge real for field verification, and assessment, and identification and registration, not according to provides on guarantor of guarantees qualification and guarantees capacity for survey verified, led to guarantees loan lost authenticity, and legitimacy, and effectiveness of; cycle loan business in the of mortgage展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




让我再看你一眼(高中数学知识点回顾).doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4317875.html