高中数学导数知识点归纳总结和例题.doc
《高中数学导数知识点归纳总结和例题.doc》由会员分享,可在线阅读,更多相关《高中数学导数知识点归纳总结和例题.doc(11页珍藏版)》请在咨信网上搜索。
导 数 考试内容 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值. 考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则 1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=. 注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零. ②以知函数定义域为,的定义域为,则与关系为. 2. 函数在点处连续与点处可导的关系: ⑴函数在点处连续是在点处可导的必要不充分条件. 可以证明,如果在点处可导,那么点处连续. 事实上,令,则相当于. 于是 ⑵如果点处连续,那么在点处可导,是不成立的. 例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为 4. 求导数的四则运算法则: (为常数) 注:①必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设,,则在处均不可导,但它们和在处均可导. 5. 复合函数的求导法则:或 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数. ⑵常数的判定方法; 如果函数在区间内恒有=0,则为常数. 注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x) = 0,同样是f(x)递减的充分非必要条件. ②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理) 当函数在点处连续时, ①如果在附近的左侧>0,右侧<0,那么是极大值; ②如果在附近的左侧<0,右侧>0,那么是极小值. 也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数,使=0,但不是极值点. ②例如:函数,在点处不可导,但点是函数的极小值点. 8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数: I.(为常数) () II. III. 求导的常见方法: ①常用结论:.②形如或两边同取自然对数,可转化求代数和形式. ③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得. 导数中的切线问题 例题1:已知切点,求曲线的切线方程 曲线在点处的切线方程为( ) 例题2:已知斜率,求曲线的切线方程 与直线的平行的抛物线的切线方程是( ) 注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,代入,得,又因为,得,故选D. 例题3:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 求过曲线上的点的切线方程. 例题4:已知过曲线外一点,求切线方程 求过点且与曲线相切的直线方程. 练习题: 已知函数,过点作曲线的切线,求此切线方程. 看看几个高考题 1.(2009全国卷Ⅱ)曲线在点处的切线方程为 2.(2010江西卷)设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为 3.(2009宁夏海南卷)曲线在点(0,1)处的切线方程为 。 4.(2009浙江)(本题满分15分)已知函数 . (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; 5.(2009北京)(本小题共14分) 设函数. (Ⅰ)若曲线在点处与直线相切,求的值; .1 函数的单调性和导数 1.利用导数的符号来判断函数单调性: 一般地,设函数在某个区间可导, 如果在这个区间内,则为这个区间内的 ; 如果在这个区间内,则为这个区间内的 。 2.利用导数确定函数的单调性的步骤: (1) 确定函数f(x)的定义域; (2) 求出函数的导数; (3) 解不等式f ¢(x)>0,得函数的单调递增区间; 解不等式f ¢(x)<0,得函数的单调递减区间. 【例题讲解】 a) 求证:在上是增函数。 b) 确定函数f(x)=2x3-6x2+7在哪个区间内是增函数,哪个区间内是减函数. 【课堂练习】 1.确定下列函数的单调区间 (1)y=x3-9x2+24x (2)y=3x-x3 2.已知函数,则( ) A.在上递增 B.在上递减 C.在上递增 D.在上递减 3.函数的单调递增区间是_____________. 函数图象及其导函数图象 1. 函数在定义域内可导,其图象如图,记的导函数为,则不等式的解集为_____________ 2. 函数的定义域为开区间,导函数在内的图象如图所示,则函数的单调增区间是_____________ 3. 如图为函数的图象,为函数的导函数,则不等式的解集为_____ _ 4. 若函数的图象的顶点在第四象限,则其导函数的图象是( ) 5. 函数的图象过原点且它的导函数的图象是如图所示的一条直线,则图象的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 O 1 2 x y O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x A B C D 6. (2007年广东佛山)设是函数的导函数,的图象如右图所示,则的图象最有可能的是( ) 7. 设函数f(x)在定义域内可导,y=f(x)的图象如下左图所示,则导函数y=f ¢(x)的图象可能为( ) 8. (安微省合肥市2010年高三第二次教学质量检测文科)函数的图像如下右图所示,则的图像可能是 ( ) x o y 9. (2010年3月广东省深圳市高三年级第一次调研考试文科)已知函数的导函数的图象如右图,则的图象可能是( ) 10. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图象是( ) (A) (B) (C) (D) 11. (2008广州二模文、理)已知二次函数的图象如图1所示 , 则其导函数的图象大致形状是( ) 12. (2009湖南卷文)若函数的导函数在区间上是增函数,则函数在区间上的图象可能是 ( ) y a b a b a o x o x y b a o x y o x y b A . B. C. D. 13. (福建卷11)如果函数的图象如右图,那么导函数的图象可能是 ( ) 14. (2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是 ( ) 15. (2008珠海一模文、理)设是函数的导函数,将和的图像画在同一个直角坐标系中,不可能正确的是( ) A. B. C. D. x y x4 O oO 16. (湖南省株洲市2008届高三第二次质检)已知函数的导函数的图像如下,则( ) 函数有1个极大值点,1个极小值点 函数有2个极大值点,2个极小值点 函数有3个极大值点,1个极小值点 函数有1个极大值点,3个极小值点 17. (2008珠海质检理)函数的定义域为,其导函数内的图象如图所示,则函数在区间内极小值点的个数是( ) (A).1 (B).2 (C).3 (D).4 18. 【湛江市·文】函数的图象大致是 . . . . 19. 【珠海·文】如图是二次函数的部分图象,则函数的零点所在的区间是 ( ) A. B. C. D. 20. 定义在R上的函数满足.为的导函数,已知函数的图象如右图所示.若两正数满足,则的取值范围是 ( ) A. B. C. D. 21. 已知函数在点处取得极大值,其导函数的图象经过点,,如图所示.求: (Ⅰ)的值; (Ⅱ)的值. 11- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 导数 知识点 归纳 总结 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文